排序方式: 共有74条查询结果,搜索用时 15 毫秒
41.
Photogrammetric measurements of dye dispersion in a high-energy surf zone provided semi-quantitative measurements of the pattern and flux of water exchange between the surf zone and nearshore. The intensity of current flow, the rip morphology and its position within the surf zone have important ecological implications for the surf zone and nearshore biota. A variety of water-movement patterns was found, ranging from currents which remained confined to the beach terrace to those which involved substantial exchange across the breaker line. In considering rips as exchange mechanisms, two rip types are recognized. Depending on the exchange of water across the breaker line, a rip may be classified as ‘exchange’ or ‘non-exchange’. The ecological significance of these current types is discussed and a classification scheme for rip currents is proposed. Offshore fluxes across the breaker line by rip currents ranged from negligible to 80 m3s−1 rip−1. The estimated maximum flux per running meter of the Sundays River Beach was calculated as 0·0.32m 3 s−1. The half-residence period of surf-zone water ranged from as little as 22 min t0 5 days, averaging 3·6 h.A dichotomy of current patterns found between the water column and surface layers is used to explain the build up of a concentration gradient in cell numbers of the surf diatom Anaulus birostratus within the surf zone despite extensive flushing by surf circulation. 相似文献
42.
To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code suitable for a CPU-based cluster supercomputer. We examine the accuracy of the tree codes through comparison with a direct code over a much wider range of parameter space than has been feasible before. We demonstrate that all three codes present comparable accuracy, and choice of approach depends on considerations relating to the scale and nature of the microlensing problem under investigation. On current hardware, there is little difference in the processing speed of the single-core CPU tree code and the GPU direct code, however the recent plateau in single-core CPU speeds means the existing tree code is no longer able to take advantage of Moore’s law-like increases in processing speed. Instead, we anticipate a rapid increase in GPU capabilities in the next few years, which is advantageous to the direct code. We suggest that progress in other areas of astrophysical computation may benefit from a transition to GPUs through the use of “brute force” algorithms, rather than attempting to port the current best solution directly to a GPU language – for certain classes of problems, the simple implementation on GPUs may already be no worse than an optimised single-core CPU version. 相似文献
43.
I. A. Bonnell C. J. Clarke M. R. Bate 《Monthly notices of the Royal Astronomical Society》2006,368(3):1296-1300
We use numerical simulations of the fragmentation of a 1000 M⊙ molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with M Jeans = 1, 2 and 5 M⊙ , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near 1 M⊙ . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at ≈1 M⊙ , even with an initial M Jeans = 5 M⊙ . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas. 相似文献
44.
45.
M. R. Bate G. I. Ogilvie S. H. Lubow J. E. Pringle 《Monthly notices of the Royal Astronomical Society》2002,332(3):575-600
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic ( γ =5/3) . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance ℳr ≳0.01 undergo shocks within a distance of order the resonance radius. 相似文献
46.
M. R. Bate I. A. Bonnell C. J. Clarke S. H. Lubow G. I. Ogilvie J. E. Pringle C. A. Tout 《Monthly notices of the Royal Astronomical Society》2000,317(4):773-781
We consider the dynamics of a protostellar disc in a binary system where the disc is misaligned with the orbital plane of the binary, with the aim of determining the observational consequences for such systems. The disc wobbles with a period approximately equal to half the orbital period of the binary and precesses on a longer time-scale. We determine the characteristic time-scale for realignment of the disc with the orbital plane as a result of dissipation. If the dissipation is determined by a simple isotropic viscosity then we find, in line with previous studies, that the alignment time-scale is of the order of the viscous evolution time-scale. However, for typical protostellar disc parameters, if the disc tilt exceeds the opening angle of the disc, then tidally induced shearing within the disc is transonic. In general, hydrodynamic instabilities associated with the internally driven shear result in extra dissipation that is expected to drastically reduce the alignment time-scale. For large disc tilts the alignment time-scale is then comparable with the precession time-scale, while for smaller tilt angles δ , the alignment time-scale varies as (sin δ )−1 . We discuss the consequences of the wobbling, precession and rapid realignment for observations of protostellar jets and the implications for binary star formation mechanisms. 相似文献
47.
Bate Bate Chen Xiao Chen Jiakai Sun Meng Li Jinlong Zhang Shuai Zhang Fengshou Zhan Liangtong Cao Junnan 《Acta Geotechnica》2022,17(6):2365-2377
Acta Geotechnica - A Rowe cell type compression-breakthrough-bender element column (CBB column) was developed to simulate and monitor the internal erosion process of glass bead (GB) and salt grain... 相似文献
48.
N. F. Bate R. L. Webster J. S. B. Wyithe 《Monthly notices of the Royal Astronomical Society》2007,381(4):1591-1596
Several gravitationally lensed quasars are observed with anomalous magnifications in pairs of images that straddle a critical curve. Simple theoretical arguments suggest that the magnification of these images should be approximately equivalent, whereas one image is observed to be significantly demagnified. Microlensing provides a possible explanation for this discrepancy. There are two key parameters when modelling this effect. The first, the fraction of smooth matter in the lens at the image positions, has been explored by Schechter & Wambsganss. They have shown that the anomalous flux ratio observed in the lensed quasar MG 0414+0534 is a priori a factor of 5 more likely if the assumed smooth matter content in the lens model is increased from 0 to 93 per cent. The second parameter, the size of the emission region, is explored in this paper, and shown to be more significant. We find that the broadening of the magnification probability distributions due to smooth matter content is washed out for source sizes that are predicted by standard models for quasars. We apply our model to the anomalous lensed quasar MG 0414+0534, and find a 95 per cent upper limit of 2.62 × 1016 h −1/2 70 ( M /M⊙ )1/2 cm on the radius of the I -band emission region. The smooth matter percentage in the lens is unconstrained. 相似文献
49.
50.
Matthew R. Bate 《Monthly notices of the Royal Astronomical Society》2009,397(1):232-248
We investigate the dependence of stellar properties on the initial kinematic structure of the gas in star-forming molecular clouds. We compare the results from two large-scale hydrodynamical simulations of star cluster formation that resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical, but in the new simulation the power spectrum of the velocity field imposed on the cloud initially and allowed to decay is biased in favour of large-scale motions. Whereas the calculation of Bate et al. began with a power spectrum P ( k ) ∝ k −4 to match the Larson scaling relations for the turbulent motions observed in molecular clouds, the new calculation begins with a power spectrum P ( k ) ∝ k −6 .
Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment. 相似文献
Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment. 相似文献