首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   14篇
地球物理   49篇
地质学   83篇
海洋学   18篇
天文学   97篇
自然地理   5篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   12篇
  2013年   18篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   17篇
  2008年   10篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有267条查询结果,搜索用时 46 毫秒
31.
Apollo 12 ropy glasses revisited   总被引:1,自引:0,他引:1  
Abstract— We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and 39Ar-40Ar age dating. The ropy glasses have KREEP-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a 39Ar-40Ar degassing age of 800 ± 15 Ma (Bogard et al, 1992). Measurements of 39Ar-40Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus she, a part of the Moon that has not been sampled directly.  相似文献   
32.
Temporal variations of the structure and the rotation rate of the solar tachocline region are studied using helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) obtained during the period 1995–2000. We do not find any significant temporal variation in the depth of the convection zone, the position of the tachocline or the extent of overshoot below the convection zone. No systematic variation in any other properties of the tachocline, like width, etc., is found either. The possibility of periodic variations in these properties is also investigated. Time-averaged results show that the tachocline is prolate with a variation of about 0.02 R in its position. Neither the depth of the convection zone nor the extent of overshoot shows any significant variation with latitude.  相似文献   
33.
A multivariate statistical analysis was carried out with log-transformed values of Cu, Ni, Co, Pb, Zn, Ag, Cr, Mn, Ca, and Sr in several sets of samples collected across the mineralized base metal zone in sheared soda granite, feldspathic schist, and chlorite schist from the central section of Mosaboni Mine of the famous Singhbhum Copper Belt of eastern India. Linear correlation coefficient matrices of two sets of ore samples (>0.5% Cu)—one from levels 18 and 21 and the other from levels 25 and 28—indicate two well-defined and distinct clusters comprising Cu, Ni, Co, Pb, and Zn on one hand and Ca, Sr, and Mn on the other. Varimax-rotatedR-mode factor analysis of two above-noted sample sets, taken along with available geologic information, indicates that over 80% of the variability in data matrices for 9–10 elements can be accounted for by four distinct processes: (a) an early phase of copper mineralization which apparently replaced Mn, Ca, and Sr in the host rock; (b) a silicate-cum-oxide phase of crystallization/recrystallization of host rock; (c) remobilization of sulfide-forming ore elements (Cu, Ni, Co, Pb, and Zn); and (d) a phase of mineralization of Ag which appears to have replaced Cr, Ca and Cu. Process (c) was quantitatively most important. Factor score studies are suggestive of preferred introduction of Ni, Co, Pb, and Zn along central parts of preexisting copper-mineralized zones.  相似文献   
34.
Geotechnical and Geological Engineering - A detailed parametric study based on linear-elastic three-dimensional finite element (FE) analysis with proper raft–soil interaction is performed for...  相似文献   
35.
36.
37.
38.
39.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
40.
We present a numerical model for the evolution of a protostellar disc that has formed self-consistently from the collapse of a molecular cloud core. The global evolution of the disc is followed for several million years after its formation. The capture of a wide range of spatial and temporal scales is made possible by use of the thin-disc approximation. We focus on the role of gravitational torques in transporting mass inward and angular momentum outward during different evolutionary phases of a protostellar disc with disc-to-star mass ratio of order 0.1. In the early phase, when the infall of matter from the surrounding envelope is substantial, mass is transported inward by the gravitational torques from spiral arms that are a manifestation of the envelope-induced gravitational instability in the disc. In the late phase, when the gas reservoir of the envelope is depleted, the distinct spiral structure is replaced by ongoing irregular non-axisymmetric density perturbations. The amplitude of these density perturbations decreases with time, though this process is moderated by swing amplification aided by the existence of the disc's sharp outer edge. Our global modelling of the protostellar disc reveals that there is typically a residual non-zero gravitational torque from these density perturbations, i.e. their effects do not exactly cancel out in each region. In particular, the net gravitational torque in the inner disc tends to be negative during first several million years of the evolution, while the outer disc has a net positive gravitational torque. Our global model of a self-consistently formed disc shows that it is also self-regulated in the late phase, so that it is near the Toomre stability limit, with a near-uniform Toomre parameter Q ≈ 1.5–2.0. Since the disc also has near-Keplerian rotation, and comparatively weak temperature variation, it maintains a near-power-law surface density profile proportional to r −3/2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号