首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3118篇
  免费   90篇
  国内免费   15篇
测绘学   86篇
大气科学   275篇
地球物理   632篇
地质学   911篇
海洋学   327篇
天文学   702篇
综合类   1篇
自然地理   289篇
  2020年   29篇
  2019年   37篇
  2018年   45篇
  2017年   38篇
  2016年   62篇
  2015年   54篇
  2014年   62篇
  2013年   172篇
  2012年   78篇
  2011年   131篇
  2010年   91篇
  2009年   160篇
  2008年   118篇
  2007年   121篇
  2006年   115篇
  2005年   96篇
  2004年   94篇
  2003年   89篇
  2002年   87篇
  2001年   71篇
  2000年   88篇
  1999年   67篇
  1998年   75篇
  1997年   45篇
  1996年   47篇
  1995年   46篇
  1994年   52篇
  1993年   43篇
  1992年   35篇
  1991年   42篇
  1990年   37篇
  1989年   42篇
  1988年   34篇
  1987年   50篇
  1986年   33篇
  1985年   53篇
  1984年   60篇
  1983年   62篇
  1982年   60篇
  1981年   64篇
  1980年   51篇
  1979年   39篇
  1978年   39篇
  1977年   42篇
  1976年   31篇
  1975年   40篇
  1974年   16篇
  1973年   22篇
  1972年   25篇
  1971年   16篇
排序方式: 共有3223条查询结果,搜索用时 15 毫秒
241.
Accelerometer measurements made by Spirit and Opportunity during their entries through the martian atmosphere are reported. Vertical profiles of atmospheric density, pressure, and temperature with sub-km vertical resolution were obtained using these data between 10 and 100 km. Spirit's temperature profile is ∼10 K warmer than Opportunity's between 20 and 80 km. Unlike all other martian entry profiles, Spirit's temperature profile does not contain any large amplitude, long wavelength oscillations and is nearly isothermal below 30 km. Opportunity's temperature profile contains a strong inversion between 8 and 12 km. A moderate dust storm, which occurred on Mars shortly before these two atmospheric entries, may account for some of the differences between the two profiles. The poorly known angle of attack and unknown wind velocity may cause the temperature profiles to contain errors of tens of Kelvin at 10 km, but these errors would be an order of magnitude smaller above 30 km. On broad scales, the two profiles are consistent with Mars Global Surveyor Thermal Emission Spectrometer (TES) pressure/temperature profiles. Differences exist on smaller scales, particularly associated with the near-isothermal portion of Spirit's profile and the temperature inversion in Opportunity's profile.  相似文献   
242.
Analysis of a buried deposit in the Diamond Valley of southern California has revealed well-preserved pollen, wood, and diatom remains. Accelerator mass spectrometry dates of 41,200±2100 and 41,490±1380 14C yr B.P. place this deposit in marine isotope stage 3. Diatoms suggest a shallow lacustrine environment. Pollen data suggest that several plant communities were present near the site, with grassland, scrub, chaparral, forest, and riparian communities represented. Comparison with modern pollen suggests similarities with montane forests in the nearby San Bernardino and San Jacinto ranges, indicating vegetation lowering by at least 900 m elevation and temperatures 4°–5°C cooler than today. An increase in high-elevation conifer pollen documents climatic cooling near the profile top. Early-profile diatoms are typical of warm water with high alkalinity and conductivity, whereas later diatoms suggest a higher flow regime and input of cooler water into the system. We suggest that the sequence is part of the cooling phase of an interstadial Dansgaard–Oeschger cycle. Records of the middle Wisconsin period are rare in southern California, but the Diamond Valley site is similar to records from Tulare Lake in the San Joaquin Valley and the ODP Site 893A record from Santa Barbara Basin. It is probable that the Diamond Valley assemblage is a local expression of a vegetation type widespread in the ranges and basins of southwestern California during the middle Wisconsin.  相似文献   
243.
Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901?C2006 and three general circulation model projections for the period 2007?C2099. Our baseline (1971?C2000) simulation reproduces the distribution of forest types in our study region as compared to the National Land Cover Data 2001 (Kappa statistic?=?0.54). Under historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen-birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5?m?yr?1 from 1901 to 2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7?m?yr?1 from 2007 to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and cooler regions of our study region under projected future climate change scenarios. By the end of the 21st century, 60% of New England is projected to be dominated by oaks relative to 21% at the beginning of the 21st century, while northern New England is modeled to be dominated by aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and hickories co-occur and form novel species associations. In addition to warming-induced northward and upslope shifts, climate change causes more complex changes in our simulations, such as reversed conversions between forest types that currently share similar bioclimatic ranges. These results underline the importance of considering community interactions and transient dynamics in modeling studies of climate change impacts on forest ecosystems.  相似文献   
244.
Climate change has led to increased temperatures, and simulation models suggest that this should affect crop production in important agricultural regions of the world. Nations at higher latitudes, such as Canada, will be most affected. We studied the relationship between climate variability (temperature and precipitation) and corn yield trends over a period of 33 years for the Monteregie region of south-western Quebec using historical yield and climate records and statistical models. Growing season mean temperature has increased in Monterregie, mainly due to increased September temperature. Precipitation did not show any clear trend over the 33 year period. Yield increased about 118 kg ha−1 year−1 from 1973 to 2005 (under normal weather conditions) due mainly to changes in technology (genetics and management). Two climate variables were strongly associated with corn yield variability: July temperature and May precipitation. These two variables explain more than a half of yield variability associated with climate. In conclusion, July temperatures below normal and May precipitation above normal have negative effects on corn yield, and the growing seasons have warmed, largely due to increases in the September temperature.  相似文献   
245.
Thermal expansion differences between minerals within rocks under insolation have previously been assumed to drive breakdown by means of granular disaggregation. However, there have been no definitive demonstrations of the efficacy of this weathering mechanism. Different surface temperatures between minerals should magnify thermal expansion differences, and thus subject adjacent minerals to repeated stresses that might cause breakdown through fatigue failure. This work confirms the existence of surface temperature differences between minerals in granitic rocks under simulated short-term temperature fluctuations so as to discriminate their potential for initiating granular disaggregation. The influence of colour, as a surrogate for albedo, and crystal size, as a function of thermal mass are specifically identified because of their ease of quantification. Four rock types with a range of these properties were examined, and subjected to repeated short-term temperature cycles by radiative heating and cooling under laboratory conditions. Results show that while albedo is the main control for overall and individual maximum temperatures, crystal size is the main factor controlling higher temperature differences between minerals. Thus, stones with large differences of mineral sizes can undergo magnified stresses due to thermal expansion differences.  相似文献   
246.
247.
248.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   
249.
This paper assesses the vulnerability of grape growers and winery operators in the Okanagan Valley, British Columbia to climate variability and change, in the context of other sources of risk. Through interviews and focus groups, producers identified the climatic and non-climatic risks relevant to them and the strategies employed to manage these risks. The results show that the presence of multiple exposures affects the way in which producers are vulnerable to climate change. Producers are vulnerable to conditions that not only affect crop yield, but also affect their ability to compete in or sell to the market. Their sensitivity to these conditions is influenced in part by institutional factors such as trade liberalization and a “markup-free delivery” policy. Producers’ ability to adapt or cope with these risks varies depending on such factors as the availability of resources and technology, and access to government programmes. Producers will likely face challenges associated with the supply of water for irrigation due to a combination of climatic changes and changing demographics in the Okanagan Valley, which in turn affect their ability to adapt to climatic conditions. Finally, adaptations made by producers can change the nature of the operation and its vulnerability, demonstrating the dynamic nature of vulnerability.  相似文献   
250.
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号