首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
地球物理   6篇
地质学   9篇
天文学   8篇
综合类   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  1997年   1篇
  1991年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
21.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
22.
Land degradation due to soil erosion is a global problem, especially on cultivated hill slopes. Economically important aromatic grasses can protect degraded hill slopes more effectively than field crops, but little information is available on their performance. This study quantifies runoff, sediment yield,enrichment ratios of soil and nutrients, and sediment-associated organic carbon and nutrients losses under three aromatic grass species: citronella(Cymbopogon nardus), lemon(Cymbopogon flexuosus), and palmarosa(Cymbopogon martini), compared with a traditional field crop, finger millet(Eleusine coracana)grown at three land slopes(4%, 8%, and 12%). It was observed that the degree of slope and type of grass both significantly influenced runoff generation. Runoff and sediment yield(SY) were significantly higher at 12% slope than at 8% and 4% slopes. Relation between rainfall and runoff were significant for all the grass species(p 0.05). Palmarosa, lemon, and citronella grass reduced the SY by 10, 54, and 60%,respectively, over finger millet. SY was also significantly related to rainfall for all the treatments(p 0.05). The threshold runoff values to produce SY were higher for aromatic grasses compared to finger millet. Enrichment of clay, silt, sand, soil organic carbon(SOC), available nitrogen(N), phosphorus(P) and potassium(K) in the sediment were not significantly different between slopes but differed significantly between aromatic grasses and finger millet. Sediment associated nutrient load varied inversely with SY mainly because of the nutrient dissolution effect of high runoff volume. Annual loss of SOC and nutrients varied from 84.7-156.8 kg ha~(-1) y~(-1) for SOC, 4.38-9.18 kg ha~(-1) y~(-1) for available N, 0.35-0.75 kg ha~(-1) y~(-1) for available P, and 2.22-5.22 kg ha~(-1) y~(-1) for available K, with the lowest values for citronella and highest for finger millet. The study found that the aromatic grasses have greater environmental conservation values than finger millet on steep degraded land.  相似文献   
23.
Research on in-channel sand mining is imperative as it may have a significant impact on channel morphology. Following this quest to quantitatively comprehend the phenomenon, experimental studies were done to investigate the dynamic characteristics of the migration of a mining pit. The evaluation of the migration rate of a mining pit in a physical scale model has found a rise in the migration rate of the pit's upstream edge with increasing discharge. A wavelet analysis applied for analyzing scale-dependent migration of the bed profile of a mining pit also revealed similar findings. Additionally, the wavelet analysis examined the length-scale dependent migration of a mining pit and a decrease in the migration rate has been observed with an increase in the length scale. The plan form of a pit (length-to-width ratio) governs the erosion and deposition processes around the pit. Both physical and statistical approaches show an increase in the migration rate with an increase in the length-to-width ratio of the pit. An empirical formulation has been developed for calculating the migration rate of the upstream edge of a mining pit based on pit geometry (length-to-width ratio), average flow velocity, and critical shear stress of the bed material. The results also show a higher bed load transport rate in the channel subjected to mining as compared to a plain bed channel.  相似文献   
24.
The algorithms for deriving vegetation biophysical parameters rely on the understanding of bi-directional interaction of radiation and its subsequent linkages with canopy radiative transfer models and their inversion. In this study, an attempt has been made to define the geometry of sensor and source position to best relate plant biophysical parameters with bidirectional reflectance of wheat varieties varying in canopy architecture and to validate the performance of PROSAIL (PROSPECT+SAIL) canopy radiative transfer model. A field experiment was conducted with two wheat cultivars varying in canopy geometry and phenology. The bidirectional measurements between 400nm–1100nm at 5nm interval were recorded every week at six view azimuth and four view zenith positions using spectro-radiometer. Canopy biophysical parameters were recorded synchronous to bi-directional reflectance measurements. The broadband reflectances were used to compute the NDVIs which were subsequently related to leaf area index and biomass. Results showed that the bidirectional reflectance increased with increase in view zenith from 200 to 600 irrespective of the sensor azimuth. For a given view zenith, the reflectance was observed to be maximum at 1500 azimuth where the difference between the sun and sensor azimuth was least. For sun azimuth of 1600 and zenith of 520, the view geometry defined by 1500 azimuth and 500 zenith corresponded to hotspot position. The measured bidirectional NDVI had significant logarithmic relationship with LAI and linear relationship with biomass for both the varieties of wheat and maximum correlation of NDVI with LAI and with biomass was obtained at the hotspot position. The PROSAIL validation results showed that the model simulated well the overall shape of spectra for all combination of view zenith and azimuth position for both wheat varieties with overall RMSE less than 5 per cent. The hotspot and dark spot positions were also well simulated and hence model performance may be suitable for deriving wheat biophysical parameters using satellite derived reflectances.  相似文献   
25.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号