首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   22篇
  国内免费   4篇
测绘学   16篇
大气科学   44篇
地球物理   154篇
地质学   248篇
海洋学   64篇
天文学   62篇
综合类   2篇
自然地理   75篇
  2024年   2篇
  2023年   3篇
  2021年   2篇
  2020年   12篇
  2019年   10篇
  2018年   21篇
  2017年   15篇
  2016年   21篇
  2015年   18篇
  2014年   19篇
  2013年   27篇
  2012年   23篇
  2011年   33篇
  2010年   37篇
  2009年   49篇
  2008年   41篇
  2007年   35篇
  2006年   19篇
  2005年   33篇
  2004年   25篇
  2003年   23篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   17篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   4篇
排序方式: 共有665条查询结果,搜索用时 0 毫秒
431.
Studies of modern cyanobacterial mats and biofilms show that they can precipitate minerals as a consequence of metabolic and degradational activities paired with ambient hydrochemical conditions. This study looked at modern microbial mats forming giant, tower‐like, groundwater‐fed, calcareous microbialites in the world's largest, highly alkaline lake; Van Gölü (Lake Van), East Turkey. Results show that microbial systems play a role not only in carbonate precipitation but also in the formation of siliceous mineral phases. Transmitted light microscopy, scanning electron microscopy and spectral observations revealed that, within the extracellular polymeric substances excreted by the mats abundant minute aragonite grains precipitated first in vivo. These minute grains were quickly succeeded and/or supplemented in the dead biomass of the cyanobacterial mat by authigenic Al–Mg–Fe siliceous phases. Silicon dioxide is available in large concentrations in the highly alkaline water of Lake Van. Divalent cations (Ca and Mg) are delivered to the microbialites mostly by groundwater springs. The precipitation of the fine‐grained siliceous phases is probably mediated by bacteria degrading the cyanobacterial biomass and complexing the excessive cations with their extracellular polymeric envelopes. The bacteria serve as nucleation centres for the subsequent precipitation of siliceous mineral phases. Generally, the biphasic (calcareous and siliceous) mineralization – characterizing Lake Van microbialites – is controlled by their interior highly dynamic hydrogeochemical situation. There, the dramatically different alkaline lake water and the Ca–Mg‐charged groundwater mix at various rates. The early diagenetic replacement of the in vivo aragonite by authigenic siliceous phases significantly increases the fossilization potential of the mat‐forming cyanobacteria. Lake Van and its giant microbialite tufa towers act as a model explaining the transformation of early diagenetic mineral phases observed in many modern and ancient carbonate marine deposits, particularly those influenced by diffusion of silica‐enriched and metal‐enriched pore waters from below the water–sediment interface.  相似文献   
432.
The coupled spatial investigation of the geometrical and geochemical properties of a chalk karstic aquifer provides information on the degree to which geologic structure controls aquifer functioning and groundwater quality. Major ion concentrations in the chalk aquifer of the Haute-Normandie region (France) were measured at a high spatial resolution (more than 100 sampling sites over a 6000 km2 area) and mapped. The first observation is a continuity of the geochemical properties, in spite of the karstic properties of the aquifer principal components analysis of geochemical maps revealed two types of spatial distributions: ions with an autochthonous origin (Ca2+, HCO3), and ions with a principally allochthonous origin (Cl, Na+, , ). Mg2+ was categorised as both autochthonous (chalk dissolution) and allochthonous (brought in by infiltration of Tertiary deposits). To better understand the spatial distribution of the geochemistry, the aquifer geochemistry was compared to the physical properties of the aquifer, in particular aquifer thickness (representing aquifer geometry) and piezometric level (representing aquifer flow). Use of spatial correlation between the geochemical and the geometrical properties provided insight regarding the directional structure of the data and give evidence of directional relations between geochemical and geometrical properties. The degree of mineralisation (principally composed of Ca2+ and ions) increased along the direction of flow, corresponding to an increase in chalk dissolution rate along the flowpath. The steepest mineralisation gradients were related to an increase in the Mg/Ca ratio, evidence of longer residence times and corresponding to zones where aquifer flow capacity is limited because of a decrease of the thickness of the flow section (anticlines or faults). These results highlight the dominant role played by the geometry and the structural context in controlling aquifer geochemistry.  相似文献   
433.
The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia (ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess (L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.  相似文献   
434.
Our goal is to determine vertical crustal movement rates from tide gauge and satellite altimetry measurements. Tide gauges measure sea level, but as they are fixed to the crust, they sense both sea surface height variations and vertical crustal movements. The differential sea level rates of sufficiently nearby stations are a good means to determine differential crustal movement rates, when sea level height variations can be assumed to be homogeneous. Satellite altimetric measurements determine sea surface height variations directly and can be used to separate the crustal signal from the sea surface height variations in tide gauge measurements. The correction of the tide gauge sea level rates for the sea surface height contribution requires collocation of the satellite pass and the tide gauge station. We show that even if this is not the case, the satellite altimetric observations enable correction of differential tide gauge rates for the effects of sea surface rate inhomogeneities.  相似文献   
435.
Geochronology is a fundamental measurement for planetary samples, providing global and solar system context for the conditions prevailing on the planet at the time of major geological events. The potassium (K)‐Argon (Ar) laser experiment (KArLE) will make in situ noble gas geochronology measurements aboard planetary robotic missions such as rovers and landers. Laser‐induced breakdown spectroscopy (LIBS) is used to measure the K abundance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry, and relative K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. This approach allows K and Ar to be measured on identical volumes multiple times to create an isochron, which improves the age determination and reveals irregularities in the rock if they exist. The KArLE technique measures a whole‐rock K‐Ar age with 10% uncertainty or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS–mass spectrometry approach is attractive because the analytical components have been flight‐proven, do not require further technical development and provide essential measurements (complete elemental abundance, evolved volatile analysis, micro‐imaging) as well as in situ geochronology.  相似文献   
436.
This study reviews the occurrence and potential of bryozoans within lithic artifacts and also sets out a methodology for their use in sourcing and discusses the advantages and disadvantages of this approach. We present case studies from our own research and from the literature on using bryozoans in sourcing archaeological lithic artifacts. Fossil bryozoans of different ages and clades can be effectively used to determine the material source of lithic artifacts from a variety of prehistoric ages. The case studies included in this report span the stratigraphic range of bryozoans from the Ordovician to the Neogene. The bryozoans came from four different orders: trepostome, fenestrate, cyclostome, and cheilostome. The use of these lithic artifacts ranged back to 25 ka. Although the majority of the fossil bryozoans were incidental in the artifacts, the bryozoans were still useful for determining their original source rock. The improved searchable online paleontologic databases allow for more efficient use of fossil bryozoans to constrain the stratigraphic and paleogeographic distribution of source outcrops. Although generally underutilized in sourcing prehistoric lithic artifacts, it is clear that by analyzing bryozoans, an increased understanding of the lithologic nature of these materials could be gained by the archaeological community.  相似文献   
437.
In this study we investigated the sulphidic mine tailings from Frongoch and Grogwynion, two abandoned lead zinc mines in mid-Wales, UK. Despite falling within the same ore field the mine waste characterisation has identified differences in the tailings from the two sites. Bulk concentrations range from 10 to 52 g kg− 1 for Pb, 1.1 to 2.9 g kg− 1 for Zn in Grogwynion and from 1.0 to 130 g kg− 1 for Pb, 11 to 110 g kg− 1 for Zn in Frongoch. An experimental (European standard leaching tests TS 14429 and TS 14405) and geochemical modelling approach was used to study the leaching composition as a function of pH and liquid/solid ratio. There was little correlation between the tailings bulk metal concentrations and the leachate composition, but variations in Pb and Zn concentrations were found to be consistent with control of dissolved Pb and Zn by secondary minerals and the mechanisms of dissolution/precipitation/sorption involving them. Specifically, the Grogwynion mine tailings with near-neutral pH have predominantly lead and zinc carbonates controlling Pb and Zn solubility in the leachates, whereas the Pb and Zn concentrations in Frongoch leachates are best modelled with a surface complexation model for metal sorption to oxyhydroxides. The different speciation results in a greater sensitivity of Grogwynion tailings to acidification with a potential release of Pb in solution up to 10 times higher than in Frongoch, despite similar bulk Pb concentrations. At acid pH, Zn is similarly dissolved to a greater extent in Grogwynion than in Frongoch tailings. There was no evidence of sulphide oxidation during the batch and column leaching tests and the suitability of using these European leaching standards for the characterisation of sulphidic mine waste materials for waste management purposes has been considered.  相似文献   
438.
439.
Calcrete (pedogenic Ca carbonate) is an important sampling medium for geochemical gold (Au) exploration in semi-arid and arid regions of Australia, because it is widespread, easy to sample and calcium (Ca) shows a strong positive correlation with Au, but not with base metals, in calcrete overlying buried Au mineralization. In this study we show that the formation of Au-anomalous calcrete can be biomediated through the activity of resident microorganisms, and may not simply be the result of passive nucleation on inactive cells or evapotransporative processes. Calcified microfossils are highly abundant in calcrete from the Barns Au-prospect in South Australia. These microfossils are morphological analogues of calcified cells and biofilms formed in laboratory experiments conducted with active bacterial cultures enriched from Au-anomalous calcareous sand from the Barns prospect. Calcium carbonates precipitated by these cultures consisted mostly of calcite, which is the main carbonate mineral in calcrete. Synchrotron micro-X-ray fluorescence (S-μXRF) mapping was used to assess the distribution of Au, Zn, Ca and other metals in Ca carbonates precipitated by active bacterial cultures. On a μm-scale the distribution of Au was heterogeneous in these Ca carbonates and differed from base metal distribution, thus mimicking the spatial separation of these metals observed in calcrete. The speciation of Au in Ca carbonates precipitated by active bacteria was measured using micro-X-ray absorption near edge structure spectroscopy (μ-XANES) and resembled that observed in Au-anomalous calcrete closely. While metallic Au was observed in Au ‘hotpots’, ionic Au was detected in the halo surrounding the ‘hotspot’. In contrast, the precipitates produced in the presence of dead bacterial cells or by raising solution pH or pCO2, i.e., hydroxylapatite, portlandite and vaterite, respectively, did not reflect the mineralogy of calcrete. Gold distribution and speciation in vaterite, formed by raising pCO2, were homogenous and did not reproduce the variation observed in calcrete and Ca carbonates precipitated by active cells. Increasing the supersaturation with respect to Ca in solution by incremental drying of the medium produced only X-ray amorphous precipitates, or hydroxylapatite in the presence heat-killed cells. In conclusion, this study shows that active microbial processes that combine biogenic Ca carbonatogenesis with Au precipitation are likely to drive the formation of Au-anomalous calcrete.  相似文献   
440.
High‐resolution vertical and lateral gradients and variations in sediment mass physical properties were derived from measurements in box cores, on the scale of millimeters, tens of centimeters, and kilometers from typical, relatively broad areas of the northern California continental slope in the Cape Mendocino area at water depths from 380 to 940 m. Such data are important as a control on comparisons of different sediment suites, as well as providing limits for realistic flux calculations of dissolved inorganic and biochemical species and pollutants. The sediments studied have relatively constant organic carbon contents (OC ? 1.75 wt%) and bulk mineralogy. They range from silty sands (~45% sand, 40% silt) to clayey silts (~63% silt, ~35% clay) and are extensively bioturbated. Physical property variations between subcores (~25 to 35 cm in length), taken from the same box core, increase with increasing clay content. For coarse‐grained sediments, mean down‐core differences in physical property values between related subcores are small, averaging 3.6% for water content, 4% for porosity, 0.026 Mg/m3 for wet bulk density, and 0.1 for void ratio. Subcore variations for fine‐grained sediments are generally significantly larger, averaging 9.8% for water content, 1.52% for porosity, 0.027 Mg/m3 for wet bulk density, and 0.3 for void ratio (box core 125). Millimeter variations of physical properties from horizontal 12‐cm‐long subcores indicate a maximum range of lateral variation of 18.2% for water content, 8% for porosity, 0.14 Mg/m3 for wet bulk density, and0.6 for void ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号