首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   22篇
  国内免费   4篇
测绘学   16篇
大气科学   44篇
地球物理   154篇
地质学   248篇
海洋学   64篇
天文学   62篇
综合类   2篇
自然地理   75篇
  2024年   2篇
  2023年   3篇
  2021年   2篇
  2020年   12篇
  2019年   10篇
  2018年   21篇
  2017年   15篇
  2016年   21篇
  2015年   18篇
  2014年   19篇
  2013年   27篇
  2012年   23篇
  2011年   33篇
  2010年   37篇
  2009年   49篇
  2008年   41篇
  2007年   35篇
  2006年   19篇
  2005年   33篇
  2004年   25篇
  2003年   23篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   17篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   4篇
排序方式: 共有665条查询结果,搜索用时 254 毫秒
101.
The dynamics of granitic landscapes are modulated by bimodal weathering, which produces patchy granular soils and expanses of bare rock ranging from meter-scale boulders to mountain-scale domes. We used terrain analysis and with cosmogenic nuclide measurements of erosion rates to quantitatively explore Wahrhaftig’s decades-old hypothesis for the development of “stepped topography” by differential weathering of bare and soil-mantled granite. According to Wahrhaftig’s hypothesis, bare granite weathers slower than soil-mantled granite; thus random erosional exposure of bare rock leads to an alternating sequence of steep, slowly weathering bedrock “steps” and gently sloped, but rapidly weathering, soil-mantled “treads.” Our investigation focused on the terrain surrounding the Southern Sierra Critical Zone Observatory (CZO), which is underlain by granitic bedrock and lies outside the limits of recent glaciation, in the heart of the stepped topography described by Wahrhaftig. Our digital terrain analysis confirms that steep steps often grade into gentle treads, consistent with Wahrhaftig’s hypothesis. However, we observe a mix-and-match of soil and bare rock on treads and steps, contrary to one of the hypothesis’ major underpinnings – that bare rock should be much more common on steps than on treads. Moreover, the data show that bare rock is not as common as expected at step tops; Wahrhaftig’s hypothesis dictates that step tops should act as slowly eroding base levels for the treads above them. The data indicate that, within each landscape class (i.e., the steps and treads), bare rock erodes more slowly than surrounding soil. This suggests that the coupling between soil production and denudation in granitic landscapes harbors a tipping point wherein erosion rates decrease when soils are stripped to bedrock. Although broadly consistent with the differential weathering invoked by Wahrhaftig, the data also show that steps are eroding faster than treads, undermining Wahrhaftig’s explanation for the origins of the steps. The revised interpretation proposed here is that the landscape evolves by back-wearing of steps in addition to differential erosion due to differences in weathering of bare and soil-mantled granite.  相似文献   
102.
The paper presents an overview of the progress in research regarding seismic response of plan and vertically irregular building structures. Three areas of research are surveyed. The first is the study of the effects of plan-irregularity by means of single-storey and multi-storey building models. The second area encompasses passive control as a strategy to mitigate torsional effects, by means of base isolation and other types of devices. Lastly, the third area concerns vertically irregular structures and setback buildings. Although fewer papers have been published in this last area with respect to the former ones, this state-of-the-art reports extensively on research efforts and progress into the seismic behaviour of irregular buildings in elevation to show the growing interest among specialists in the field.  相似文献   
103.
Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r 2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4°C above the last millennial average (LMA = 4.2°C) from 730 to 850 AD, and 0.1°C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7°C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2°C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3°C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2°C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8°C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records from the eastern Canadian Arctic that document a cool LIA and twentieth century warming. However, the occurrence and timing of events, such as the LIA and Medieval Warm Period, varies considerably among records, suggesting heterogeneous climatic patterns across the North American Arctic.
Broxton W. BirdEmail:
  相似文献   
104.
105.
Microbial populations in contaminant plumes   总被引:4,自引:1,他引:3  
Received, May 1999/Revised, October 1999/Accepted, October 1999  相似文献   
106.
Sylwester  Barbara  Sylwester  Janusz 《Solar physics》2000,194(2):305-325
We consider in detail the evolutionary patterns of few white-light flares observed by Yohkoh. The following data have been used in the analysis: sequences of de-convolved SXT images in X-ray and optical filters, MEM reconstructed HXT images and the other supporting data. The resolution in the de-convolved images is below 1 arc sec. Working with sequences of de-convolved images makes it also possible to investigate the dynamics of these structures with high spatial accuracy. Comparison of the morphology of flare brightenings as observed in hard, soft and optical ranges reveals that these emissions are not co-spatial and are most probably related to different plasma volumes at any instant. These observations cannot be easily accommodated within standard flare scenarios. Traditionally, the hard and optical flare emissions are expected to be co-spatial and the soft X-ray emission is presumed to fill the coronal portion of flaring loop(s) during rise phase. Present observations do not easily fit to such scenario.  相似文献   
107.
108.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   
109.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   

110.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号