首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2585篇
  免费   41篇
  国内免费   27篇
测绘学   245篇
大气科学   163篇
地球物理   526篇
地质学   911篇
海洋学   59篇
天文学   627篇
综合类   21篇
自然地理   101篇
  2022年   23篇
  2021年   29篇
  2020年   34篇
  2019年   29篇
  2018年   138篇
  2017年   111篇
  2016年   151篇
  2015年   76篇
  2014年   130篇
  2013年   150篇
  2012年   105篇
  2011年   115篇
  2010年   98篇
  2009年   110篇
  2008年   88篇
  2007年   62篇
  2006年   59篇
  2005年   56篇
  2004年   32篇
  2003年   41篇
  2002年   54篇
  2001年   36篇
  2000年   39篇
  1999年   44篇
  1998年   34篇
  1997年   37篇
  1996年   28篇
  1995年   27篇
  1994年   34篇
  1993年   29篇
  1992年   31篇
  1991年   40篇
  1990年   28篇
  1989年   41篇
  1988年   48篇
  1987年   52篇
  1986年   36篇
  1985年   35篇
  1984年   61篇
  1983年   58篇
  1982年   34篇
  1981年   21篇
  1980年   27篇
  1979年   16篇
  1978年   19篇
  1976年   12篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   10篇
排序方式: 共有2653条查询结果,搜索用时 15 毫秒
981.
A long-range correlation between earthquakes is indicated by some phenomena precursory to strong earthquakes. Most of the major earthquakes show prior seismic activity that in hindsight seems anomalous. The features include changes in regional activity rate and changes in the pattern of small earthquakes, including alignments on unmapped linear features near the (future) main shock. It has long been suggested that large earthquakes are preceded by observable variations in regional seismicity. Studies on seismic precursors preceding large to great earthquakes with M ≥ 7.5 were carried out in the northeast India region bounded by the area 20°–32°N and 88°–100°E using the earthquake database from 1853 to 1988. It is observed that all earthquakes of M ≥ 7.5, including the two great earthquakes of 1897 and 1950, were preceded by abnormally low anomalous seismicity phases some 11–27 years prior to their occurrence. On the other hand, precursory time periods ranged from 440 to 1,768 days for main shocks with M 5.6–6.5 for the period from 1963 to 1988. Furthermore, the 6 August, 1988 main shock of M 7.5 in the Arakan Yoma fold belt was preceded by well-defined patterns of anomalous seismicity that occurred during 1963–1964, about 25.2 years prior to its occurrence. The pattern of anomalous seismicity in the form of earthquake swarms preceding major earthquakes in the northeast India region can be regarded as one of the potential seismic precursors. Database constraints have been the main barrier to searching for this precursor preceding smaller earthquakes, which otherwise might have provided additional information on its existence. The entire exercise indicates that anomalous seismicity preceding major shocks is a common seismic pattern for the northeast India region, and can be employed for long-range earthquake prediction when better quality seismological data sets covering a wide range of magnitudes are available. Anomalous seismic activity is distinguished by a much higher annual frequency of earthquake occurrence than in the preceding normal and the following gap episodes.  相似文献   
982.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   
983.
The two-dimensional problem of a long displacement dislocation in a multilayered half-space is studied. Both plane strain and antiplane strain cases are considered. The Thomson-Haskell matrix method is used to obtain the static field caused by the dislocation. The source is represented in terms of the jumps at the source level in the depth-dependent factors in the Fourier integral representation of the displacements and stresses due to the source in an infinite medium. Explicit expressions for the surface displacements due to dip-slip and strike-slip faults of arbitrary dip are obtained. The formulation developed is quite convenient for numerical computation.  相似文献   
984.
This paper develops and applies the minimum relative entropy (MRE) theory with spectral power as a random variable for streamflow forecasting. The MRE theory consists of (1) hypothesizing a prior probability distribution for the random variable, (2) determining the spectral power distribution, (3) extending the autocorrelation function, and (4) doing forecasting. The MRE theory was verified using streamflow data from the Mississippi River watershed. The exponential distribution was chosen as a prior probability in applying the MRE theory by evaluating the historical data of the Mississippi River. If no prior information is given, the MRE theory is equivalent to the Burg entropy (BE) theory. The spectral density obtained by the MRE theory led to higher resolution than did the BE theory. The MRE theory did not miss the largest peak at 1/12th frequency, which is the main periodicity of streamflow of the Mississippi River, but the BE theory sometimes did. The MRE theory was found to be capable of forecasting monthly streamflow with a lead time from 12 to 48 months. The coefficient of determination (r 2) between observed and forecasted stream flows was 0.912 for Upper Mississippi River and was 0.855 for Lower Mississippi River. Both MRE and BE theories were generally more reliable and had longer forecasting lead times than the autoregressive (AR) method. The forecasting lead time for MRE and BE could be as long as 48–60 months, while it was less than 48 months for the AR method. However, BE was comparable to MRE only when observations fitted the AR process well. The MRE theory provided more reliable forecasts than did the BE theory, and the advantage of using MRE is more significant for downstream flows with irregular flow patterns or where the periodicity information is limited. The reliability of monthly streamflow forecasting was the highest for MRE, followed by BE followed by AR.  相似文献   
985.
Urban stream features can be used to promote nutrient retention; however, their interactions with different hydrological regimes impact nutrient cycling, decrease their retention capacity, and inhibit stream ecosystem functioning. This study analysed the temporal and spatial dynamics of the uptake of three nutrients (nitrate, ammonium, and phosphorus) in an urban drainage stream during high flows. In particular, we studied variations in net uptake along the right margin (with native vegetation and a roots mat) comparatively to the left margin (a non‐rooted grassy bank). Applying the spiralling approach within each subreach on either side, we determined nutrient subreach (sr) retention metrics: uptake rate coefficients , mass transfer rates , and areal uptake rates . Our results showed nitrate (NO3) and ammonium (NH4) net uptakes on the right side were higher and more frequent along subreaches where the root mat was more abundant ( [μg m?2 s?1] = 22.80 ± 1.13 for NO3 and 10.50 ± 0.81 for NH4), whereas on the left side both nutrients showed patchy and inconsistent net uptake patterns despite the homogeneous grass distribution. Net uptake for filtered reactive phosphorus (FRP) was not observed on either side at any flow rate. The impact of hydrological factors such as discharge, travel time, water depth, and concentration, on uptake metrics was studied. Despite increases in travel time as the flow decreased, there was a reduction in net uptake rates, and , on either side. This was attributed to a reduction in water level with declining flows, which decreased hydrologic connectivity with the stream banks, combined with a decrease in water velocity and a reduction in nutrient concentrations. We concluded the rooted bank acted as an effective retention area by systematically promoting net uptake resulting in a twofold increased dissolved inorganic nitrogen (DIN) retention relative to the non‐rooted side where net uptake was spatially localized and highly dynamic. Overall, this work emphasized the importance of strategically sampling close to biologically active surfaces to more accurately determine areas where gross uptake surpasses release process.  相似文献   
986.
Shallow aquifers typically have greater hydrologic connectivity and response to recharge and changes in surface water management practices than deeper aquifers and are therefore often managed to reduce the risk of flooding. Quantification of the water table elevation response under different management scenarios provides valuable information in shallow aquifer systems to assess indirect influences of such modifications. The episodic master recession method was applied to the 15‐min water table elevation and NEXRAD rainfall data for 6 wells to identify water table response and individual rainfall events. The objectives of this study were to evaluate the effects of rainfall, water table elevation, canal stage, site‐specific characteristics, and canal structure modification/water management practice on the fluctuations in water table elevations using multiple/stepwise multiple linear regression techniques. With the modification of canal structure and operation adjustment, significant difference existed in water table response in the southern wells due to its relative downstream position regarding the general groundwater flow direction and the structural modification locations. On average, water table response height and flood risk were lower after than before the structure modification to canals. The effect of rainfall event size on the height of water table response was greater than the effect of antecedent water table elevation and canal stage on the height of water table response. Other factors including leakance of the canal bed sediment, specific yield, and rainfall on i  ? 1 day had significant effects on the height of water table response as well. Antecedent water table elevation and canal stage had greater and more linear effects on the height of water table response after the management changes to canals. Variation in water table response height/rainfall event size ratio was attributed to difference in S y , antecedent soil water content, hydraulic gradient, rainfall size, and run‐off ratio. After the structure modification, water table response height/rainfall event size ratio demonstrated more linear and proportional relationship with antecedent water table elevation and canal stage.  相似文献   
987.
The application of piezo-ceramic elements for measuring shear and compression wave velocities in the soil mass is increasing day-by-day. Depending upon the configuration and polarity, these elements can either be used as benders or extenders, which can transmit and receive shear and compression waves, respectively. Though, several researchers have successfully employed these elements for characterizing the soil mass based on the shear and compression wave velocities, determination of the “time lag” between the input and output waves remains debatable. Even, the existing literature does not clearly present the response of these elements with respect to the frequency of excitation and the type of the material to be characterized. With this in view, extensive investigations were made to capture the performance of piezo-ceramic elements by changing their (a) wiring configuration (i.e., series or parallel) and (b) polarization (i.e., same or opposite) in the compacted soils of different characteristics (i.e., moisture content, dry density and type of the soil). Details of the methodology are presented in this paper and special attention has been paid to address various problems (i.e., wave attenuation, crosstalk phenomena, near field effect and overshooting of transmitting waves) that are associated with signal interpretation and may yield misleading results.  相似文献   
988.
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   
989.
An investigation was carried out to compare the ability of two bacteria Pseudomonas aeruginosa PSA5 and Rhodococcus sp. NJ2 isolated from petroleum sludge for degradation of benzo(a)pyrene [B(a)P], a HMW PAH compound in MSM. During 25 days of incubation, 50 ppm B(a)P was degraded by 88 and 47 % by P. aeruginosa PSA5 and Rhodococcus sp. NJ2, respectively. Besides, involvement of different catabolic enzymes, that is, salicylate hydroxylase, 2-carboxybenzaldehyde dehydrogenase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, was also examined to identify their differential role in B(a)P degradation. Among these enzymes, the highest induction of 2-carboxybenzaldehyde dehydrogenase (773.5 nmol mg?1 protein) was recorded in P. aeruginosa PSA5, while salicylate hydroxylase was highly expressed (839.6 nmol mg?1 protein) in Rhodococcus sp. NJ2. Both the bacteria were found biosurfactant (glycolipid) producing, and role of biosurfactant in PAH degradation was also ascertained by reduced surface tension, higher emulsification index and increased cell surface hydrophobicity.  相似文献   
990.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号