首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
大气科学   1篇
地球物理   30篇
地质学   12篇
海洋学   12篇
天文学   7篇
自然地理   7篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   6篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1983年   2篇
  1981年   2篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1967年   1篇
排序方式: 共有69条查询结果,搜索用时 109 毫秒
21.
22.
Carbon, nitrogen, and phosphorus flow networks, consisting of 59 compartments, were constructed for the Sylt-Rømø Bight, a large shallow sea in the German Wadden Sea. These networks were analysed using ecological network analysis. Each network depicts the standing stock of each component in the ecosystem, and the flows between them. The trophic efficiency by which material is utilised in the Bight increase from 3%, to 6% to 17% for C, N and P, respectively. The number of cycles though which these elements pass increase from 1 197 for carbon, to 414?744 and 538?800 for nitrogen and phosphorus, respectively. The Finn Cycling Index, reflecting the amount of material recycled as a fraction of the total system activity, TST, increases from 17% for carbon, to 43% for nitrogen, to 81% for phosphorus. Other system level attributes such as the Average Path Length, the Average Internal Mutual Information, Relative Ascendancy, Relative and Normalized Redundancy, show an increase from the carbon to the nitrogen to the phosphorus networks. Phosphorus is tightly cycled over longer pathways than the other two elements, and also has the longest residence time in the Bight. Postulated differences between the behaviour of energy (or carbon) and biogeochemical networks in coastal ecosystems are evident from the results obtained from ecological network analysis.  相似文献   
23.
The representer method is applied to a one-dimensional two-phase flow model in porous media; capillary pressure and gravity are neglected. The Euler–Lagrange equations must be linearized, and one such linearization is presented here. The representer method is applied to the linear system iteratively until convergence, though a rigorous proof of convergence is out of reach. The linearization chosen is easy to calculate but does not converge for certain weights; however, a simple damping restores convergence at the cost of extra iterations. Numerical experiments are performed that illustrate the method, and quick comparison to the ensemble Kalman smoother is made. This research was supported by NSF grant EIA-0121523.  相似文献   
24.
25.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
26.
A significant proportion of tropical peatlands has been drained for agricultural purposes, resulting in severe degradation. Hydrological restoration, which usually involves blocking ditches, is therefore a priority. Nevertheless, the influence of ditch blocking on tropical peatland hydrological functioning is still poorly understood. We studied water-level dynamics using a combination of automated and manual dipwells, and also meteorological data during dry and wet seasons over 6 months at three locations in Sebangau National Park, Kalimantan, Indonesia. The locations were a forested peatland (Forested), a drained peatland with ditch dams (Blocked), and a drained peatland without ditch dams (Drained). In the dry season, water tables at all sites were deeper than the Indonesian regulatory requirement of 40 cm from the peat surface. In the dry season, the ditches were dry and water did not flow to them. The dry season water-table drawdown rates — solely due to evapotranspiration — were 9.3 mm day−1 at Forested, 9.6 mm day−1 at Blocked, but 12.7 mm day−1 at Drained. In the wet season, the proportion of time during which water tables in the wells were deeper than the 40 cm limit ranged between 16% and 87% at Forested, 0% at Blocked, and between 0% and 38% at Drained. In the wet season, water flowed from the peatland to ditches at Blocked and Drained. The interquartile range of hydraulic gradients between the lowest ditch outlet and the farthest well from ditches at Blocked was 3.7 × 10−4 to 7.8 × 10−4 m m−1, but 1.9 × 10−3 to 2.6 × 10−3 m m−1 at Drained. Given the results from Forested, a water-table depth limit policy based on field data may be required, to reflect natural seasonal dynamics in tropical peatlands. Revised spatial designs of dams or bunds are also required, to ensure effective water-table management as part of tropical peatland restoration.  相似文献   
27.
Underwater census and single‐pass electrofishing were compared for estimating relative abundance of juvenile brown trout in the Kakanui River, South Island, NZ. Mean sampling efficiency was lower, and the variability of sampling efficiency was much greater, for underwater census (0+ trout: x = 0.38, s = 0.368; 1+ trout: x = 0.62, s = 0.822) than for single‐pass electrofishing (0+ trout: x = 0.61, s = 0.143; 1+ trout: x = 0.74, s = 0.171). Sampling efficiency of both methods was dependent on temperature. Electrofishing became less efficient at higher temperatures whereas underwater census became less efficient at colder temperatures. The low, and highly variable, sampling efficiency for underwater census of 0+ brown trout was related to substrate hiding behaviour which is dependent on temperature. A ratio method for comparing relative abundance estimates is presented. Minimum significance values for the ratio (R) were derived for 0+ trout using temperature adjusted sampling efficiencies. To be statistically significant, relative abundance estimates made by underwater census had to differ by a factor of 6–7 times, whereas those made by single‐pass electrofishing had to differ only by about 2 times, depending on the number of fish counted. By confining comparisons of relative abundance estimates made by underwater census to the summer period, differences of about 3.5–4 times could be detected statistically. It was concluded that single‐pass electrofishing is superior to underwater census for estimating the relative abundance of juvenile brown trout in shallow (< 1 m) river habitat, especially when temperature varies widely as with season and time of day.  相似文献   
28.
Abstract

Ecological flow needs (EFN) frameworks incorporate a range of ecologically-relevant hydrological variables based on prior knowledge of river regime characteristics. However, when applied in cold regions, these approaches have largely ignored the influence of winter ice cover and the spring freshet on hydrological regimes: key components of river systems in cold regions with important direct effects on water quality, aquatic habitat and ecology. Here, we combine a review of the published literature on cold-regions hydrology and hydro-ecology with available hydrometric information for sites across Canada, a major cold-region country, to explore phenomena unique to these systems. We identify several ecologically-relevant hydrological measures (i.e. annual ice on/off dates, ice-cover duration, spring freshet initiation, peak water level during river ice break-up), pairing these with established metrics for incorporation into an enhanced suite of indicators specifically designed for cold regions. This paper presents the Cold-regions Hydrological Indicators of Change (CHIC), which can provide the basis for the assessment of EFN and climate change assessments in cold-region river ecosystems.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Peters, D.L., Monk, W.A., and Baird, D.J., 2014. Cold-regions Hydrological Indicators of Change (CHIC) for ecological flow needs assessment. Hydrological Sciences Journal, 59 (3–4), 502–516.  相似文献   
29.
The characteristics of a reflected spherical wave at a free surface are investigated by numerical methods; in particular, the polarization angles and amplitude coefficients of a reflected spherical wave are studied. The classical case of the reflection of a plane P wave from a free surface is revisited in order to establish our terminology, and the classical results are recast in a way which is more suited for the study undertaken. The polarization angle of a plane P wave, for a given angle of incidence, is shown to be 90° minus twice the angle of reflection of the reflected S wave. For a Poisson's ratio less than 1/3, there is a non-normal incident angle for which both amplification coefficients are 2 precisely; for this incident angle the direction of the particle motion at the free surface is also the direction of the incident wave. For a wave emanating from a spherical source, the polarization angle, for all angles of incidence, is always less than, or equal to, the polarization angle of a plane P wave. The vector amplification coefficient of a spherical wave, for all angles of incidence, is always greater than the vector amplification coefficient of a plane P wave. As expected, the results for a spherical wave approach the results for a plane P wave in the far field. Furthermore, there was a good agreement between the theoretical modelling and the numerical modelling using the dynamic finite element method (DFEM).  相似文献   
30.
The inorganic chemical investigation added in August 1972 to the Viking Lander scientific package will utilize an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters will detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (55Fe and 109Cd). The output of the proportional counters will be subjected to pulse-height analysis by an on-board step-scanning single-channel analyzer with adjustable counting periods. The data will be returned to Earth, via the Viking Orbiter relay system, and the spectra constructed, calibrated, and interpreted here. The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Calibration standards are an integral part of the instrument.The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few percent (for major elements) depending on the element in question. Elements of atomic number 11 or less are determined only as a group, though useful estimates of their individual abundances maybe achieved by indirect means. The expected radiation environment will not seriously hamper the measurements. Based on the results, inferences can be drawn regarding (1) the surface mineralogy and lithology; (2) the nature of weathering processes, past and present, and the question of equilibrium between the atmosphere and the surface; and (3) the extent and type of differentiation that the planet has undergone.The Inorganic Chemical Investigation supports and is supported by most other Viking Science investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号