首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   176篇
  国内免费   322篇
测绘学   137篇
大气科学   145篇
地球物理   149篇
地质学   475篇
海洋学   182篇
天文学   10篇
综合类   90篇
自然地理   88篇
  2024年   3篇
  2023年   21篇
  2022年   62篇
  2021年   73篇
  2020年   43篇
  2019年   55篇
  2018年   65篇
  2017年   45篇
  2016年   50篇
  2015年   65篇
  2014年   44篇
  2013年   61篇
  2012年   64篇
  2011年   98篇
  2010年   68篇
  2009年   67篇
  2008年   54篇
  2007年   62篇
  2006年   73篇
  2005年   53篇
  2004年   41篇
  2003年   19篇
  2002年   20篇
  2001年   19篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有1276条查询结果,搜索用时 31 毫秒
331.
Arctic sea ice cover has decreased dramatically over the last three decades. This study quanti?es the sea ice concentration(SIC) trends in the Arctic Ocean over the period of 1979–2016 and analyzes their spatial and temporal variations. During each month the SIC trends are negative over the Arctic Ocean, wherein the largest(smallest) rate of decline found in September(March) is-0.48%/a(-0.10%/a).The summer(-0.42%/a) and autumn(-0.31%/a) seasons show faster decrease rates than those of winter(-0.12%/a) and spring(-0.20%/a) seasons. Regional variability is large in the annual SIC trend. The largest SIC trends are observed for the Kara(-0.60%/a) and Barents Seas(-0.54%/a), followed by the Chukchi Sea(-0.48%/a), East Siberian Sea(-0.43%/a), Laptev Sea(-0.38%/a), and Beaufort Sea(-0.36%/a). The annual SIC trend for the whole Arctic Ocean is-0.26%/a over the same period. Furthermore, the in?uences and feedbacks between the SIC and three climate indexes and three climatic parameters, including the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), Dipole anomaly(DA), sea surface temperature(SST), surface air temperature(SAT), and surface wind(SW), are investigated. Statistically, sea ice provides memory for the Arctic climate system so that changes in SIC driven by the climate indices(AO, NAO and DA) can be felt during the ensuing seasons. Positive SST trends can cause greater SIC reductions, which is observed in the Greenland and Barents Seas during the autumn and winter. In contrast, the removal of sea ice(i.e., loss of the insulating layer) likely contributes to a colder sea surface(i.e., decreased SST), as is observed in northern Barents Sea. Decreasing SIC trends can lead to an in-phase enhancement of SAT, while SAT variations seem to have a lagged in?uence on SIC trends. SW plays an important role in the modulating SIC trends in two ways: by transporting moist and warm air that melts sea ice in peripheral seas(typically evident inthe Barents Sea) and by exporting sea ice out of the Arctic Ocean via passages into the Greenland and Barents Seas, including the Fram Strait, the passage between Svalbard and Franz Josef Land(S-FJL),and the passage between Franz Josef Land and Severnaya Zemlya(FJL-SZ).  相似文献   
332.
对琼东南盆地深水区YL19A钻井岩屑样品进行了稀土元素(REE)地球化学特征分析,旨在研究琼东南盆地深水区的沉积物源及古环境变化。钻井岩屑样品的球粒陨石标准化REE配分模式总体呈轻稀土(LREE)富集、重稀土(HREE)亏损的右倾式,但在各时代地层之间表现出一定的差异。崖城组和陵水组岩屑呈明显的Eu正异常,而梅山组、三亚组和黄流组岩屑呈Eu的弱负异常,指示了沉积环境和沉积物源上的变化。在早渐新世时期,研究区物源以来自周边凸起的火山碎屑和陆源碎屑为主,沉积环境为海陆过渡相;自渐新世晚期开始,随着琼东南盆地全区发生海侵,研究区水深逐渐加大,沉积环境由海陆过渡相变为浅海相,物源变为远源陆源物质,并具有红河与海南岛多物源混合的特征,红河沉积物对物源的贡献相对较大,基性火山物质对物源的贡献减弱。YL19A钻井岩屑的REE地球化学特征在距今30、28.5、25.5和23.8Ma等地层界面处均发生明显的突变,对区域性构造运动事件有明显的响应。  相似文献   
333.
甄毓  贺惠  傅亮  刘乾  毕乃双  杨作升 《海洋与湖沼》2018,49(6):1259-1267
海洋蓝洞作为一种独特的海洋地貌单元,洞内的生物群落结构与生态系统特征一直是国内外同行学者关注的热点问题之一。南海三沙永乐龙洞是世界上最深的海洋蓝洞(300m),其独特的生态特征更为引入瞩目。本研究以古菌16S rRNA基因序列为目标,采用Illumina高通量测序技术对西沙永乐龙洞内水体与沉积物中的古菌群落结构进行了研究。结果表明,本研究所获得的古菌类群可归为4门、21纲、29目、42科、45属,广古菌和奇古菌是丰度最高的两种古菌。龙洞内表层水体中古菌群落多样性与洞外水体相差不大,但随深度增加,洞内古菌群落多样性显著降低,深水层古菌群落结构与浅水层差异显著。龙洞内沉积物中的古菌生存环境与水体差异巨大,为大量特殊物种提供了生存空间。侧壁沉积物中的古菌群落多样性随深度增加显著降低,而150m平台处古菌群落多样性则远高于侧壁沉积物。水温对龙洞内水体中的古菌群落结构具有显著影响(P0.01)。研究结果显示永乐龙洞古菌群落有很高的多样性,其垂向分布与洞内环境多要素的变化密切相关。本研究对认识三沙永乐龙洞内的生态系统特征有显著意义。  相似文献   
334.
The Fram Strait(FS) is the primary region of sea ice export from the Arctic Ocean and thus plays an important role in regulating the amount of sea ice and fresh water entering the North Atlantic seas. A 5 a(2011–2015) sea ice thickness record retrieved from Cryo Sat-2 observations is used to derive a sea ice volume flux via the FS. Over this period, a mean winter accumulative volume flux(WAVF) based on sea ice drift data derived from passivemicrowave measurements, which are provided by the National Snow and Ice Data Center(NSIDC) and the Institut Francais de Recherche pour d'Exploitation de la Mer(IFREMER), amounts to 1 029 km~3(NSIDC) and1 463 km~3(IFREMER), respectively. For this period, a mean monthly volume flux(area flux) difference between the estimates derived from the NSIDC and IFREMER drift data is –62 km~3 per month(–18×10~6 km~2 per month).Analysis reveals that this negative bias is mainly attributable to faster IFREMER drift speeds in comparison with slower NSIDC drift data. NSIDC-based sea ice volume flux estimates are compared with the results from the University of Bremen(UB), and the two products agree relatively well with a mean monthly bias of(5.7±45.9) km~3 per month for the period from January 2011 to August 2013. IFREMER-based volume flux is also in good agreement with previous results of the 1990 s. Compared with P1(1990/1991–1993/1994) and P2(2003/2004–2007/2008), the WAVF estimates indicate a decline of more than 600 km~3 in P3(2011/2012–2014/2015). Over the three periods, the variability and the decline in the sea ice volume flux are mainly attributable to sea ice motion changes, and second to sea ice thickness changes, and the least to sea ice concentration variations.  相似文献   
335.
随着对海洋开发力度的不断加大,海洋生态环境问题日益突出,已成为中国海洋可持续发展的制约因素。作为衡量海洋可持续发展的主要手段之一,海洋生态环境承载力的定量化评价是必不可少的重要环节。针对海洋生态环境承载力的突变特性,基于熵值-突变级数法,从压力和承压两方面构建海洋生态环境承载力评价指标体系,结合障碍因子诊断模型,考量环渤海地区4个省市2006-2014年的海洋生态环境承载力的空间差异和时序特征,剖析影响承载力发展水平的主要障碍因子。研究表明:环渤海地区2006-2014年海洋生态环境承载能力整体较差,承载力水平呈下降趋势;2014年海洋生态环境承载强度分为两类,山东和天津为较弱承载力水平,河北和辽宁为弱承载力水平;生态弹性小、环境污染重、生态资源匮乏已成为制约环渤海海洋生态环境承载力发展水平的普遍问题。  相似文献   
336.
流域陆地生态系统水体净化服务表征及驱动力分析   总被引:1,自引:0,他引:1  
陆地生态系统的水体净化服务能过滤地表径流中的污染物,有助于防控流域非点源污染。准确表征该服务的时空变化特征,定量探索其驱动机制则是生态系统服务应用的前提。论文以太湖流域典型地区为例,利用空间分布式的生物物理模型,研究流域陆地水体净化服务的空间格局与时间演变特征,并借助GIS空间统计方法及面板数据模型分析其主导驱动力。结果显示:2000—2010年间研究区59.19%、58.27%的面积分别为氮、磷净化服务的弱降低区。2000—2005年与2005—2010年两个时间段内研究区氮净化服务先下降后略有上升,其中苏州市区增幅最大;磷净化服务为下降趋势,以无锡和苏州市区降幅最大。气候因素和水网密度对水体净化服务具有显著正影响,而负向驱动力则存在差异。为此应采取适当的措施调整主导因素,提高陆地生态系统的水体净化服务,减少氮、磷排放,为流域非点源污染治理及水环境管理提供支撑。  相似文献   
337.
王东坡  李沁泽  毕钰璋  刘浩 《岩土力学》2020,41(4):1323-1332
桩群是一种可有效耗散碎屑流运动能量,抑制碎屑流运动距离及速度的山地灾害防护结构。在碎屑流沟口与受灾体之间构建一组桩群减速带,可达到保护受灾体的目的。以物理模型试验为基础,开展弧型桩群、方型桩群和圆型桩群的沟槽型碎屑流冲击动力响应研究。讨论了3种不同类型的桩群对沟槽型碎屑流运动形态的影响,进一步开展弧型桩群的结构优化研究。结果表明:采用桩群结构可有效减小沟槽型碎屑流堆积距离并抑制其运动速度;3种不同形状桩群之间,弧型桩与方型桩的拦挡效果明显优于圆型桩;弧型桩由于凹槽式外型,对沟槽型碎屑流堆积面积、淤埋深度的抑制效果稍优于方型桩;在相同高度、直径等几何参数下,弧型桩体积比圆型桩小22.6%,比方型桩小39.2%,因此弧型桩的制作成本也相对较低;弧型桩排数从1排增加到3排,桩群拦挡率分别提升7.2%、4.5%;适量增加槽口与桩之间距离Ld可以有效提高弧型桩群防护结构的能量耗散效率。该研究可为桩群在沟槽型碎屑流防治工程中的应用提供理论及技术支持。  相似文献   
338.
大坝运行对水库消落带土壤环境影响研究进展   总被引:2,自引:0,他引:2  
周紫璇  陆颖  钟荣华  毕晓静  袁旭  敦越 《水文》2019,39(1):15-19
水库消落带土壤环境对水库水位变化的响应非常明显。通过分析大坝运行下水库消落带土壤理化性质、重金属、微生物特性和土壤侵蚀变化特征,总结水位波动对消落带土壤性质的影响过程与趋势。研究表明水库消落带土壤历经长时期干湿交替过程后,其物理性质发生较大改变,但具体变化过程和趋势仍存争议。土壤化学性质中,碳、氮和磷元素迁移转化趋势明显,但各不相同。土壤重金属元素时空分异特征改变。土壤微生物总体上呈减少趋势,并且在海拔梯度上差异显著。土壤侵蚀是消落带面临的主要环境问题。未来应采用物理模型方法,定量分析水位与土壤性质相关关系,并加强对西南高山峡谷区高坝大库消落带的研究。  相似文献   
339.
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.  相似文献   
340.
通过戊二醛交联合成羧甲基壳聚糖铜配合物,用红外光谱进行结构表征.测定羧甲基壳聚糖铜中铜的量,分别考察其在人工海水及海水中的缓释性能.产品中铜的质量百分数为10.4%,在人工海水中缓释32 d的累积释放度为0.239*!0%,在海水中缓释30 d的累积释放度为0.211*!2%,且均释放平稳,说明其具有优异的缓释性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号