首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   0篇
测绘学   1篇
大气科学   9篇
地球物理   36篇
地质学   69篇
海洋学   39篇
天文学   75篇
自然地理   1篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   9篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   15篇
  2011年   13篇
  2010年   10篇
  2009年   6篇
  2008年   12篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
41.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   
42.
An analysis of the character of the possible dynamics of all hitherto known planetary satellites shows two satellites—Amalthea (J5) and Prometheus (S16)—to have the most unusual structure of the phase space of possible rotational motion. These are the only satellites whose phase space of planar rotation may host synchronous resonances of three different kinds: the α resonance, the β resonance, and a mode corresponding to the period doubling bifurcation of the α resonance. We analyze the stability of these states against the tilt of the rotational axis.  相似文献   
43.
We consider the problem of calculating the Lyapunov time (the characteristic time of predictable dynamics) of chaotic motion in the vicinity of separatrices of orbital resonances in satellite systems. The primary objects of study are the chaotic regimes that have occurred in the history of the orbital dynamics of the second and fifth Uranian satellites (Umbriel and Miranda) and the first and third Saturnian satellites (Mimas and Tethys). We study the dynamics in the vicinity of separatrices of the resonance multiplets corresponding to the 3 : 1 commensurability of mean motions of Miranda and Umbriel and the multiplets corresponding to the 2 : 1 commensurability of mean motions of Mimas and Tethys. These chaotic regimes have most probably contributed much to the long-term orbital evolution of the two satellite systems. The equations of motion have been numerically integrated to estimate the Lyapunov time in models corresponding to various epochs of the system evolution. Analytical estimates of the Lyapunov time have been obtained by a method (Shevchenko, 2002) based on the separatrix map theory. The analytical estimates have been compared to estimates obtained by direct numerical integration.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 364–374.Original Russian Text Copyright © 2005 by Mel’nikov, Shevchenko.  相似文献   
44.
The seasonal variability of oceanographic conditions in the southern part of the Sea of Okhotsk is described based on long-term mean temperature T and salinity S from observations along a standard oceanographic section Cape Aniva-Cape Dokuchaev (May–November). It is shown that the Soya Current is relatively weak in spring, with low temperature and salinity gradients along the section. The Sea of Okhotsk low-salinity water mass is observed in the upper layer. It was formed as a result of melting of a large amount of ice brought here with the East Sakhalin Current from the northwestern part of the Sea of Okhotsk. A cold intermediate layer (CIL) at depths of 50–150 m extends along the entire section. The cold intermediate layer core with a temperature at the edge of the Sakhalin shelf of about ?1.3°C is retained during a period of maximum warming in August; however, in October–November the intensified flow of the East Sakhalin Current (up to 50 cm/s) results in a situation when relatively warm low-salinity waters, connected with the Amur River runoff, dissipate CIL. The results of 12 surveys conducted by the Sakhalin Research Institute for Fisheries and Oceanography in 1998–2004 show significant deviations of T and S [10] in different years from the calculated values. Generally, maximum anomalies (ΔT > 4°C and ΔS > 0.55‰) are observed in the surface layer. Their values and statistical significance decrease with depth. However, the situation is opposite in some cases. The maximum deviation from normal was observed in June 1999, when warm and salt waters were located much further seaward from the Kunashir shelf, which is most likely connected with the Soya Current meandering.  相似文献   
45.
Oceanology - The results of continuous four-year-long investigations (from May 2015 to April 2019) of the elemental composition of water and suspended matter in the Northern Dvina River are given....  相似文献   
46.
In this study, the grain-size and clay-mineral compositions of 73 surface sediment samples collected in a variety of environmental settings in the White Sea are presented to characterize recent sedimentation processes, reconstruct transport pathways, and identify potential source areas of the terrigenous components. Areas >100 m deep are invariably characterized by silty clay, whereas areas <100 m deep exhibit more heterogeneous grain-size compositions plausibly explained by coastal erosion and (re-)distribution mechanisms, particularly tidal currents. The dominance of sand in the estuarine areas of the Onega and Dvina rivers as well as toward the Gorlo Strait connecting the White Sea with the Barents Sea is attributed to increased current speeds. Illite and smectite are the dominant clay minerals in recent sediments of the southwestern and eastern White Sea sectors, respectively. Their distribution patterns largely depend on the geology of the source areas, and mirror surface circulation patterns, especially in Dvina Bay. Smectite is a key clay mineral in White Sea surface sediments, as it reveals the dominating influence of the Northern Dvina’s runoff on sedimentation and water circulation throughout the basin. In comparison to other Eurasian shelf seas, the White Sea is characterized by a greater diversity of clay-mineral assemblages, which range from illite- to smectite-dominated sectors containing variable amounts of chlorite and kaolinite.  相似文献   
47.
The paper presents new information on the chemical composition of the insoluble aerosol fraction in the atmospheric surface boundary layer of different climatic zones of the North Atlantic (temperate humid, arid and semiarid, equatorial humid). The material for this study was collected during 12 expeditions. Nylon meshes were used to catch aerosols along the course of vessels. Aerosols above the North Atlantic consist of lithogenic, biogenic, and anthropogenic particles transported from different regions, which governs the differences in their concentrations and mineral and chemical compositions. Significant (by more than an order of magnitude) enrichment of aerosols in Cu, Cd, Zn, Pb, Sb, and Se is related to anthropogenic atmospheric pollution.  相似文献   
48.
The results of the analysis of samples of the Northern Dvina River’s suspended particulate matter obtained by the sedimentation method from large water volumes in the periods of the spring high water and summer low water are presented. By the method of sequential leaching using different reagents, four fractions have been separated: the F1 is the sorbed complex and carbonates, the F2 is the amorphous hydroxides of Fe and Mn, the F3 is the form connected with the organic matter, and the F4 is the residual or silicate-detrital (inert) form. The data have shown that all ten elements determined were grouped with respect to the ratio of the distinguished forms: F4 is the predominant form for Al and Fe (73–88% of all the forms; however, the summer sample contains only 38% of this form of iron, and F2 is the predominant form for this period with 46.6%). As to Mn, the F1, F2, and F4 are nearly equally distributed in the spring high water samples, and only the F3 form is less important (5.4%). In the summer sample, the manganese sorbed complex is predominant (53.5%); for Cu, Ni, Cr, and Co, the inert F4 form is predominant (60–70%) in the sample of the spring suspended matter. The summer low water suspended matter has a lower F4 contribution (25–45%); for Zn, Pb, and Cd, the equal distribution of the forms in the spring samples is typical, while the summer suspended matter differs by the F2 form’s predominance (53–61% for Zn and Pb). The main conclusion from the acquired data is that the geochemical mobility of all the studied elements, except for cadmium, in the summer low water suspended matter is higher than in the spring suspended matter. The more intensive biogeochemical processes in August, the high level of organic matter, and the higher contribution of phytoplankton lead to the intensification of the metals’ geochemical activity in the Northern Dvina suspended matter in the end of the summer compared to the spring high water period when the physical processes are predominant over the biogeochemical ones due to the high speeds of the freshened waters flow.  相似文献   
49.
The data on the supra-ice snow, ice, under-ice water, and benthic algal flora obtained in 2007–2008 by sampling in the estuary of the Severnaya Dvina River are analyzed. The river ice and under-ice water in the estuarine zone and in the channel part of the Severnaya Dvina differed greatly in the algal flora’s composition. The fresh water species never exceeded 8.6%, while the ice algae composed 90–96% of the total ice inhabitants’ biomass. In the under-ice water, this value did not exceed 58–64%. The bacteria in the ice composed not more than 2.5–10% of the total biomass, while, in the under-ice water, 36–49%. The shares of ciliates (0.04%) and nematodes (0.005–1.6%) in the total biomass were negligible. In the estuarine zone, the ice was inhabited mainly by nematodes (78% of the total biomass), while, in the river, their share decreased to 9%. The contribution of bacteria was 15% in Dvina Bay and increased to 61% in the river. The importance of algae in the snow was minor: 7% of the total biomass in the marine zone and 30% in the river region. High species diversity of the algal flora in the sandy and sandy-silty littoral grounds was revealed. The values of the total biomass of the bottom algal flora (0.38 g C/m2) were only two to three times lower than the values revealed in similar habitats in the summer. The epipelithic forms (0.15 g C/m2) dominated, being represented by 46 species of algae (49%). The shares of epipsammonic (0.12 g C/m2) and planktonic (0.11 g C/m2) species were almost equal to each other: 25 and 22 species, respectively (27 and 24%).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号