首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7849篇
  免费   2020篇
  国内免费   3028篇
测绘学   1151篇
大气科学   1316篇
地球物理   1630篇
地质学   5558篇
海洋学   1462篇
天文学   133篇
综合类   706篇
自然地理   941篇
  2024年   72篇
  2023年   189篇
  2022年   464篇
  2021年   586篇
  2020年   478篇
  2019年   593篇
  2018年   551篇
  2017年   500篇
  2016年   507篇
  2015年   593篇
  2014年   622篇
  2013年   671篇
  2012年   801篇
  2011年   755篇
  2010年   706篇
  2009年   678篇
  2008年   662篇
  2007年   614篇
  2006年   578篇
  2005年   470篇
  2004年   374篇
  2003年   266篇
  2002年   193篇
  2001年   206篇
  2000年   178篇
  1999年   137篇
  1998年   87篇
  1997年   84篇
  1996年   59篇
  1995年   49篇
  1994年   26篇
  1993年   29篇
  1992年   24篇
  1991年   22篇
  1990年   13篇
  1989年   9篇
  1988年   8篇
  1987年   12篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1979年   3篇
  1958年   1篇
  1957年   1篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
221.
Strata behaviors are mainly affected by regional geodynamic background. The influence of rock mass stress and energy distribution on strata behaviors in the Tongxin mine is studied in terms of regional tectonic movement, seismic activity and tectonic stress field. The results show that the extrusion lifting movement of Kouquan fault adjacent to the Tongxin mine results in the stress concentration in the rock of the Carboniferous coal bed and accumulation of a large amount of elastic energy and forms structural background of Tongxin mine. Due to various seismic activities in the mine area, the strain energy is known to reach much higher levels, up to 0.5×108 J1/2. Since the stratigraphic structure is sensitive to the mining operation, the strain energy could cause strong strata behaviors. A special geological structure model of the Tongxin mine is established based on the geodynamic division method. The distribution of regional structure stress field is determined by the rock mass stress analysis system. Based on this model, Tongxin mine is divided into five areas with high stress, eight areas with low stress and eight areas with gradient stress. The strong strata behaviors mostly occur in high stress areas. These results could provide guidance to predict the strength of regional or mine pressure and control strata behavior in different areas.  相似文献   
222.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   
223.

Background

The interaction between Ca-HAP and Pb2+ solution can result in the formation of a hydroxyapatite–hydroxypyromorphite solid solution [(PbxCa1?x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it’s necessary to know the physicochemical properties of (PbxCa1?x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported.

Results

Dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb2+ concentrations increased rapidly with time and reached a peak value after 240–720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00–0.80), the aqueous Pb2+ concentrations increased quickly with time and reached a peak value after 1–12 h dissolution, and then decreased gradually and attained a stable state after 720–2160 h dissolution.

Conclusions

The dissolution process of the solids with high XPb (0.89–1.00) was different from that of the solids with low XPb (0.00–0.80). The average K sp values were estimated to be 10?80.77±0.20 (10?80.57–10?80.96) for hydroxypyromorphite [Pb5(PO4)3OH] and 10?58.38±0.07 (10?58.31–10?58.46) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f o ) were determined to be ?3796.71 and ?6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1?x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1?x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1?x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution.
Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite–hydroxyapatite solid solution [(PbxCa1?x)5(PO4)3OH] at 25??C and an initial pH of 2.00.
  相似文献   
224.
本研究以硫酸镁作为麻醉剂,比较了在不同水温条件下硫酸镁对仿刺参幼参的麻醉效果,分析了不同浓度硫酸镁对仿刺参幼参的麻醉效果。实验水温设置11℃、13℃、15℃、17℃、19℃和21℃六个温度梯度,实验用仿刺参幼参规格分为大规格(L)40.26±1.84g、中规格(M)21.83±1.72g、小规格(S)11.03±1.63g。实验结果显示:1.在硫酸镁麻醉剂浓度相同时,仿刺参规格越大麻醉所需时间越长,复苏时间却越短;随着麻醉剂浓度增加,对仿刺参幼参麻醉时间相应缩短,但复苏时间呈现逐渐延长。不同浓度硫酸镁麻醉剂对不同规格仿刺参的麻醉效果具有显著差异(P0.05)。2.在水温11℃~20℃范围内,随着水温的升高,对仿刺参幼参的麻醉时间从26.13±17.78min缩短到21.47±3.52min,但复苏时间从26.13±17.78min增加到71.05±12.32min,不同水温条件下硫酸镁对仿刺参幼参麻醉效果影响显著(P0.05)。研究表明,仿刺参体重在20g以下的适宜麻醉浓度为0.1~0.25mol·L-1,体重在20g以上的适宜麻醉浓度为0.25~0.35mol·L~(-1)。  相似文献   
225.
为了更好地了解煤矿地下水位的变化趋势,结合工程实例,运用递归和非递归2种滤波技术进行分析,通过对比2种滤波技术的滤波效果,可以得到地下水位的变化规律和成因机理。结果表明:滤波系数的调校对滤波效果的影响至关重要。根据平滑度指标、均方根误差和信噪比对现有观测数据进行计算的结果可知,当b=0.5时递归滤波效果相对较好,当q=5时非递归滤波效果相对较好。滤波结果可以作为预测未来该地区地下水位变化趋势的依据,也可以为安全生产提供参考。  相似文献   
226.
临朐山旺泉苏打水赋存于临朐群牛山组蜂窝状玄武岩中,水质优良,开发前景广阔,该文利用高压反应釜模拟实际地层条件下水岩平衡反应,同时辅以同位素分析,矿物X-射线衍射分析等手段,结合当地特殊的水文地质背景,系统性地阐明了苏打水形成机理。  相似文献   
227.
山东省曹县地区土壤地球化学调查是按浅层土壤样品1点/4 km~2,深层土壤样品1点/16 km~2。测试N,P,K,Cu,Zn,B,Mo,Mn,F,As,Hg,Pb,Cr,Cd等14种指标。在统计这些指标的表层、深层土壤地球化学特征参数的基础上,对其与世界、全省同类参数的差异进行了分析,并分析了区内表层、深层土壤元素含量的相关性,认为该区表层土壤元素含量的显著特征是高F而低P,Zn,Mo。大部分元素在表层土壤中的含量继承了土壤母质的成分特征,但N,P,F,Hg等受人为活动和污染源的作用在表层土壤中明显富集。  相似文献   
228.
大量的研究资料表明煌斑岩与金矿在空间上、时间上具明显的对应关系。埠上金矿位于胶东玲珑金矿田西南方向的金岭金矿田的中北部;有关该矿区煌斑岩的研究资料较少。该文结合岩石学、矿物学、大地构造学等特征,对区内煌斑岩的地球化学进行了研究,揭示其内在成因,认为区内煌斑岩是因该区受到古太平洋板块的俯冲、华北板块与杨子板块碰撞造山及郯庐断裂带等构造岩浆活动的影响,俯冲洋壳析出的流体交代地幔形成的具氧化性的EM1型富集型地幔岩浆于造山拉张期在大陆活动边缘浅成侵入而成的。  相似文献   
229.
杨莉  陈文  张斌  尹继元  孙敬博  李洁  喻顺  杨静  袁霞 《地质通报》2016,35(1):152-166
额尔宾山花岗岩岩体位于南天山晚古生代侵入岩带,对该花岗岩进行锆石U-Pb定年获得296.1±1.8Ma的年龄,为早二叠世。岩石主量元素分析结果表明,该花岗岩的Si O2含量为66.96%~67.3%,富碱(Na2O+K2O=7.53%~7.97%),K2O/Na2O1(1.15~1.27),属高钾钙碱性系列岩石;Al2O3为15.56%~15.62%,Al2O3K2O+Na2O+Ca O,属于过铝型。岩石稀土元素配分模式呈现轻稀土元素(LREE)富集((La/Yb)N=27.03~30.62)、重稀土元素(HREE)亏损((LREE/HREE)=18.2~20.1)、具有中等程度的负Eu异常(δEu=0.64~0.68)。微量元素判别结果显示,其具有I-A型花岗岩过渡的特征。结合区域地质背景综合分析,初步认定该岩体可能形成于南天山同碰撞向后碰撞构造体制转换时期,据此可以推测南天山洋盆闭合时限至少应该在早二叠世以前。  相似文献   
230.
对阿尔金北缘地区变形蚀变花岗岩、花岗质糜棱岩、变形酸性火山岩和变形英安质凝灰岩中石英和绢云母2种矿物进行X光岩石组构分析,认为本区岩石变形比较明显,宏观面理近于东西向展布,绢云母变形较强,平行于面理定向排列;而石英以底面或近底面滑移为主,部分样品兼有柱面Ⅰ型滑移和柱面Ⅱ型滑移,反映本区岩石变形机制为中浅层次的脆-韧性变形(10~15km、250~350℃、0.25~0.40GPa)。通过岩石组构特征与宏观面理产状,推断本区韧性变形以右行运动为主,与板块碰撞在阿尔金北缘大平沟地区产生的韧性变形带特征一致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号