首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53218篇
  免费   574篇
  国内免费   1138篇
测绘学   2086篇
大气科学   4159篇
地球物理   10154篇
地质学   21973篇
海洋学   3551篇
天文学   7857篇
综合类   2214篇
自然地理   2936篇
  2021年   275篇
  2020年   299篇
  2019年   302篇
  2018年   5354篇
  2017年   4638篇
  2016年   3346篇
  2015年   696篇
  2014年   881篇
  2013年   1580篇
  2012年   1868篇
  2011年   3834篇
  2010年   3001篇
  2009年   3580篇
  2008年   3001篇
  2007年   3463篇
  2006年   1212篇
  2005年   1033篇
  2004年   1230篇
  2003年   1159篇
  2002年   1006篇
  2001年   759篇
  2000年   753篇
  1999年   563篇
  1998年   540篇
  1997年   599篇
  1996年   469篇
  1995年   474篇
  1994年   471篇
  1993年   381篇
  1992年   387篇
  1991年   358篇
  1990年   373篇
  1989年   342篇
  1988年   344篇
  1987年   368篇
  1986年   325篇
  1985年   425篇
  1984年   414篇
  1983年   446篇
  1982年   415篇
  1981年   384篇
  1980年   420篇
  1979年   324篇
  1978年   302篇
  1977年   294篇
  1976年   272篇
  1975年   264篇
  1974年   269篇
  1973年   254篇
  1971年   173篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
An experiment is reported in which heat was released as a passive tracer from an elevated lateral line source within a model plant canopy, with h s = 0.85 h c (h s and h c being the source and canopy heights, respectively). A sensor assembly consisting of three coplanar hot wires and one cold wire was used to measure profiles of mean temperature % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaana% aabaGaeqiUdehaaiaacMcaaaa!390C!\[(\overline \theta )\], temperature variance (Σθ 2), vertical and streamwise turbulent heat fluxes, and third moments of wind and temperature fluctuations. Conclusions were:
  1. Despite the very heterogeneous flow within the canopy, the observed dispersive heat flux (due to spatial correlation between time-averaged temperature and vertical velocity) was small. However, there is evidence from the plume centroid (which was lower than h s at the source) of systematic recirculating motions within the canopy.
  2. The ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiabeI7aXjaab2gacaqGHbGaaeiEaaqabaGccaGGVaWaa0aa% aeaacqaH4oqCaaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaaaaa!41DF!\[\sigma _{\theta {\text{max}}} /\overline \theta _{{\text{max}}} \] (of maximum values on vertical profiles) decreased from 1 near the source to an asymptotic value of 0.4 far downstream, in good agreement with previous experimental and theoretical work for concentration fluctuations in the surface layer well above the canopy.
  3. The eddy diffusivity for heat from the line source (K HL ) increased, downstream of the source, to a nearly constant ‘far-field’ vertical profile. Within the canopy, the far-field K HL was an order of magnitude larger than K HP , the equivalent diffusivity for a plane source; well above the canopy, the two were equal. The time scale defined by (far-field K HL )/(vertical velocity variance) was independent of height within the canopy.
  4. Budgets for temperature variance, vertical heat flux and streamwise heat flux are remarkably similar to the equivalent budgets for an elevated line source in the surface layer well above the canopy, except in the lower part of the canopy in the far field, where vertical transport is much more important than in the surface layer.
  5. A random flight simulation of the mean height and depth of the temperature plume was generally in good agreement with experiment. However, details of the temperature and streamwise turbulent heat flux profiles were not correct, suggesting that the model formulation needs to be improved.
  相似文献   
82.
The application of the saddlepoint approximation to reliability analysis of dynamic systems is investigated. The failure event in reliability problems is formulated as the exceedance of a single performance variable over a prescribed threshold level. The saddlepoint approximation technique provides a choice to estimate the cumulative distribution function (CDF) of the performance variable. The failure probability is obtained as the value of the complement CDF at a specif ied threshold. The method requires computing the saddlepoint from a simple algebraic equation that depends on the cumulant generating function (CGF) of the performance variable. A method for calculating the saddlepoint using random samples of the performance variable is presented. The applicable region of the saddlepoint approximation is discussed in detail. A 10-story shear building model with white noise excitation illustrates the accuracy and effi ciency of the proposed methodology.  相似文献   
83.
The Ocean Drilling Program (ODP) initiated drilling at Site 1256D in the Guatemala Basin, about 1,000 km off the East Pacific Rise to penetrate plutonic rocks, anticipated to be relatively shallow in this region, formed at an ultra-fast spreading rate. IODP Expedition E312 successfully drilled into gabbros at ~1,150 m in basement. Multi-channel seismic traces show weak laterally coherent sub-basement reflections at borehole depths. Synthetic reflectivity seismograms were computed using a Ricker wavelet and impedance profiles from borehole sonic logs. These seismograms show significant sub-basement amplitude peaks. A zero-offset vertical seismic profile, shot on E312, was processed to investigate the authenticity of these reflections and their relationship to borehole geology. A dual scheme of the median filtering and F–K dip filtering was used. Tests with synthetic seismograms indicate the approach is effective at reasonable SNR levels. Downgoing energy is clearly identified but negligible upgoing energy is visible over random noise. These results indicate that lava flows and igneous contacts in upper ocean crust have significant topography on lateral scales less than the Fresnel Zone (~300 m) due to igneous and tectonic processes.  相似文献   
84.
85.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   
86.
A simple analytical model is developed for the meanupcrossing rate of plume concentration fluctuations assuming that thisprocess can be well approximated by a lognormal process. The resultingexpression requires only the specification of the in-plume fluctuationintensity and in-plume Taylor micro-time scale and, hence, does notexplicitly involve the joint probability density function of theconcentration and its derivative. The analytical model provides agood fit to some field measurements of the mean upcrossing rate ina dispersing plume.  相似文献   
87.
The processes of formation and distribution of the resources of fresh groundwater and surface water in the territory of Crimea Peninsula are considered. Water availability in the natural–historic and administrative regions of the republic is characterized. The proportions between different categories of groundwater resources are shown with their role in water supply to Crimea taken into account. The presentday development of groundwater resources is analyzed and the possible increase in water consumption meeting geoecological requirements is substantiated.  相似文献   
88.
89.
This study analyzed the uncertainty of inversion and the resolution limit in the presence of noise by means of statistical experiments. The exhaustive method is adopted to obtain the global optimal solution in each experiment. We found that even with small level of noise, solutions fluctuate in a large range for the thin bed. The distribution of solutions in the presence of noise is closely related to the spread of the cost function in the absence of noise. As a result, the area of a certain neighborhood around the true solution on the spread of the cost function in the absence of noise is used to evaluate the uncertainty of inversion and the resolution limit in the presence of noise. In the case that the SNR (signal-to-noise ratio) is 5 in this study, solutions focus around the true solution with a very small uncertainty only when the bed thickness is greater than the reciprocal of the double predominant frequency of the convoluting wavelet.  相似文献   
90.
Three finite element codes, namely TELEMAC, ADCIRC and QUODDY, are used to compute the spatial distributions of the M2, M4 and M6 components of the tide in the sea region off the west coast of Britain. This region is chosen because there is an accurate topographic dataset in the area and detailed open boundary M2 tidal forcing for driving the model. In addition, accurate solutions (based upon comparisons with extensive observations) using uniform grid finite difference models forced with these open boundary data exist for comparison purposes. By using boundary forcing, bottom topography and bottom drag coefficients identical to those used in an earlier finite difference model, there is no danger of comparing finite element solutions for “untuned unoptimised solutions” with those from a “tuned optimised solution”. In addition, by placing the open boundary in all finite element calculations at the same location as that used in a previous finite difference model and using the same M2 tidal boundary forcing and water depths, a like with like comparison of solutions derived with the various finite element models was possible. In addition, this open boundary was well removed from the shallow water region, namely the eastern Irish Sea where the higher harmonics were generated. Since these are not included in the open boundary, forcing their generation was determined by physical processes within the models. Consequently, an inter-comparison of these higher harmonics generated by the various finite element codes gives some indication of the degree of variability in the solution particularly in coastal regions from one finite element model to another. Initial calculations using high-resolution near-shore topography in the eastern Irish Sea and including “wetting and drying” showed that M2 tidal amplitudes and phases in the region computed with TELEMAC were in good agreement with observations. The ADCIRC code gave amplitudes about 30 cm lower and phases about 8° higher. For the M4 tide, in the eastern Irish Sea amplitudes computed with TELEMAC were about 4 cm higher than ADCIRC on average, with phase differences of order 5°. For the M6 component, amplitudes and phases showed significant small-scale variability in the eastern Irish Sea, and no clear bias between the models could be found. Although setting a minimum water depth of 5 m in the near-shore region, hence removing wetting and drying, reduced the small-scale variability in the models, the differences in M2 and M4 tide between models remained. For M6, a significant reduction in variability occurred in the eastern Irish Sea when a minimum 5-m water depth was specified. In this case, TELEMAC gave amplitudes that were 1 cm higher and phases 30° lower than ADCIRC on average. For QUODDY in the eastern Irish Sea, average M2 tidal amplitudes were about 10 cm higher and phase 8° higher than those computed with TELEMAC. For M4, amplitudes were approximately 2 cm higher with phases of order 15° higher in the northern part of the region and 15° lower in the southern part. For M6 in the north of the region, amplitudes were 2 cm higher and about 2 cm lower in the south. Very rapid M6 tidal-phase changes occurred in the near-shore regions. The lessons learned from this model inter-comparison study are summarised in the final section of the paper. In addition, the problems of performing a detailed model–model inter-comparison are discussed, as are the enormous difficulties of conducting a true model skill assessment that would require detailed measurements of tidal boundary forcing, near-shore topography and precise knowledge of bed types and bed forms. Such data are at present not available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号