Abstract— Shock‐recovery experiments were carried out on samples of the H6 chondrite Kernouvé at shock pressures of 10, 15, 20, 25, 30, 35, 45, and 60 GPa and preheating temperatures of 293 K (low‐temperature experiments) and 920 K (high‐temperature experiments). Using a calculated equation of state of Kernouvé, pressure‐pulse durations of 0.3 to 1.2 μs were estimated. The shocked samples were investigated by optical microscopy to calibrate the various shock effects in olivine, orthopyroxene, oligoclase, and troilite. The following pressure calibration is proposed for silicates: (1) undulatory extinction of olivine <GPa; (2) weak mosaicism of olivine from 10–15 GPa to 20–25 GPa; (3) onset of strong mosaicism of olivine at 20–25 GPa; (4) transformation of oligoclase to diaplectic glass completed at 25–30 GPa (low‐temperature experiments) and at 20–25 GPa (high‐temperature experiments); (5) onset of weak mosaicism in orthopyroxene at 30–35 GPa (low‐temperature experiments) and at 25–30 GPa (high‐temperature experiments); and (6) recrystallization or melting of olivine starting at 45–60 GPa (low‐temperature experiments) and at 35–45 GPa (high‐temperature experiments), and completed above 45–60 GPa in the high‐temperature experiments. Troilite displays distinct differences between the samples shocked at low and high temperatures. In the low‐temperature experiments, the following effects can be observed in troilite: (1) undulatory extinction up to 25 GPa, (2) twinning up to 45 GPa, (3) partial recrystallization from 30 to 60 GPa, and (4) complete recrystallization >35 GPa; whereas in the high‐temperature experiments, troilite shows (1) complete recrystallization from 10 up to 45 GPa and (2) melting and crystallization above 45 GPa. Localized shock‐induced melting is observed in samples shocked to pressures >15 GPa in the high‐temperature experiments and >30 GPa for the low‐temperature experiments in the form of FeNi metal and troilite melt injections and intergrowths and as pockets and veins of whole‐rock melt. Obviously, the onset and abundance of shock‐induced localized melting strongly depends on the initial temperature of the sample. 相似文献
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large-scale travelling wave pattern. The resulting field structure possesses magnetic helicity, which is conserved in a periodic box by the ideal magnetohydrodynamics equations and can hence only change on a resistive time-scale. This strongly constrains the growth time of the large-scale magnetic field, but less strongly constrains the length of the cycle period. Comparing this with the case without shear, the time-scale for large-scale field amplification is shortened by a factor Q , which depends on the relative importance of shear and helical turbulence, and which also controls the ratio of toroidal to poloidal field. The results of the simulations can be reproduced qualitatively and quantitatively with a mean-field α Ω-dynamo model with alpha-effect and turbulent magnetic diffusivity coefficients that are less strongly quenched than in the corresponding α 2-dynamo. 相似文献
The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNSs) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in the formation of large-scale inhomogeneous magnetic structures from an initially uniform magnetic field. Earlier investigations of this instability in DNSs of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma ?? are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L2/??t, where ??t is the turbulent diffusivity and L is the scale of the domain. DNSs are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number. 相似文献
Zoned quartz and feldspar phenocrysts of the Upper Carboniferous eastern Erzgebirge volcano-plutonic complex were studied by cathodoluminescence and minor and trace element profiling. The results verify the suitability of quartz and feldspar phenocrysts as recorders of differentiation trends, magma mixing and recharge events, and suggest that much heterogeneity in plutonic systems may be overlooked on a whole-rock scale. Multiple resorption surfaces and zones, element concentration steps in zoned quartz (Ti) and feldspar phenocrysts (anorthite content, Ba, Sr), and plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the eastern Erzgebirge volcano-plutonic complex. Generally, feldspar appears to be sensitive to the physicochemical changes of the melt, whereas quartz phenocrysts are more stable and can survive a longer period of evolution and final effusion of silicic magmas. The regional distribution of mixing-compatible textures suggests that magma mingling and mixing was a major process in the evolution of these late-Variscan granites and associated volcanic rocks.
Quartz phenocrysts from 14 magmatic phases of the eastern Erzgebirge volcano-plutonic complex provide information on the relative timing of different mixing processes, storage and recharge, allowing a model for the distribution of magma reservoirs in space and time. At least two levels of magma storage are envisioned: deep reservoirs between 24 and 17 km (the crystallisation level of quartz phenocrysts) and subvolcanic reservoirs between 13 and 6 km. Deflation of the shallow reservoirs during the extrusion of the Teplice rhyolites triggered the formation of the Altenberg-Teplice caldera above the eastern Erzgebirge volcano-plutonic complex. The deep magma reservoir of the Teplice rhyolite also has a genetic relationship to the younger mineralised A-type granites, as indicated by quartz phenocryst populations. The pre-caldera biotite granites and the rhyodacitic Schönfeld volcanic rocks represent temporally and spatially separate magma sources. However, the deep magma reservoir of both is assumed to have been at a depth of 24–17 km. The drastic chemical contrast between the pre-caldera Schönfeld (Westfalian B–C) and the syn-caldera Teplice (Westfalian C–D) volcanic rocks is related to the change from late-orogenic geotectonic environment to post-orogenic faulting, and is considered an important chronostratigraphic marker. 相似文献
Messinian evaporites of locally more than 3‐km thickness occupy the subduction zone between Cyprus and Eratosthenes Seamount. Based on a dense grid of seismic reflection profiles, we report on compressional salt tectonics and its impact on the Late Miocene to Quaternary structural evolution of the Cyprus subduction zone. Results show that evaporites have experienced significant post‐Messinian shortening along the plate boundary. Shortening has initiated allochthonous salt advance between Cyprus and Eratosthenes Seamount, representing an excellent example of salt which efficiently escapes subduction and accretion. Further east, between Eratosthenes Seamount and the Hecataeus Rise, evaporites were compressionally inflated without having advanced across post‐Messinian strata. Such differences in the magnitude of salt tectonic shortening may reflect a predominately north–south oriented post‐Messinian convergence direction, raising the possibility of a later coupling between the motion of Cyprus and Anatolia than previously thought. Along the area bordered by Cyprus and Eratosthenes Seamount a prominent step in the seafloor represents the northern boundary of a controversially debated semi‐circular depression. Coinciding with the southern edge of the salt sheet, this bathymetric feature is suggested to have formed as a consequence of compressional salt inflation and seamount‐directed salt advance. Topographic lows on top of highly deformed evaporites are locally filled by up to 700 m of late Messinian sediments. The uppermost 200 m of these sediments were drilled in the course of ODP Leg 160 and interpreted to represent Lago Mare‐type deposits (Robertson, Tectonophysics, 1998d, 298 , 63‐82). Lago Mare deposits are spatially restricted to the western part of the subduction zone, pinching out towards the east whereas presumably continuing into the Herodotus Basin further west. We suggest a sea level control on late Messinian Lago Mare sedimentation, facilitating sediment delivery into basinal areas whereas inhibiting Lago Mare deposition into the desiccated Levant Basin. Locally, early salt deformation is believed to have provided additional accommodation space for Lago Mare sedimentation, resulting in the presently observed minibasin‐like geometry. 相似文献
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2. 相似文献
New geochronological U-Pb (LA-ICP-MS) zircon data and geochemical analyses from the Variscan orthogneisses and metavolcanic rocks in the western Tauern window are presented and used to reconstruct the pre-Alpine evolution of this area. The late- and post-Variscan stage in the Tauern window was characterised by distinct magmatic pulses accompanied by the formation of volcano-sedimentary basins. The magmatic activity started in the Visean (335.4 ± 1.5 Ma) with the intrusion of a K-rich, durbachitic biotite-granite (protolith of the Ahorn gneiss). Following a period of exhumation and erosion, Westfalian–Stefanian volcanics were deposited (Grierkar meta-rhyodacite: 309.8 ± 1.5 Ma; Venntal meta-rhyolite: 304.0 ± 3.0 Ma). A renewed magmatic pulse occurred in the Early Permian, producing large volumes of tonalites and granodiorites (Tux meta-granodiorite: 292.1 ± 1.9 Ma). The youngest magmatism is characterised by pyroclastic and tuffitic deposits (Pfitsch meta-rhyolite: 280.5 ± 2.6 Ma; Schönach valley meta-andesite: 279.0 ± 4.8 Ma). This volcanism was probably related to crustal extensional faulting within an intra-continental graben and horst setting, asthenospheric upwelling and heat flow increase due to the onset of the Permian rifting. The Permo-Triassic peneplanation and subsidence is documented by shallow marine and evaporitic deposits. Probably in the Middle Jurassic times, the area was flooded and in the Late Jurassic the whole area was covered by limestones, representing post-rift sediments on the southern European continental margin. 相似文献
The impacts of military activities in peacetime, military action and territorial changes on greenhouse gas emission commitments of nations under the Kyoto Protocol are analysed. We propose rules and institutional responsibilities to deal with the repercussions of such changes on markets in emission permits and national commitments aiming at prevention of serious distortions. 相似文献