首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   16篇
  国内免费   4篇
测绘学   6篇
大气科学   27篇
地球物理   86篇
地质学   102篇
海洋学   83篇
天文学   43篇
综合类   1篇
自然地理   20篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   14篇
  2016年   10篇
  2015年   13篇
  2014年   15篇
  2013年   21篇
  2012年   17篇
  2011年   19篇
  2010年   14篇
  2009年   12篇
  2008年   17篇
  2007年   20篇
  2006年   9篇
  2005年   22篇
  2004年   15篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   12篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有368条查询结果,搜索用时 437 毫秒
61.
The variation in snowmelt energy and energy components were evaluated with respect to forest density. Surface snowmelt rates, surface evaporation from snow cover and meteorological elements were measured in the open and under sparse (411 trees/ha) and dense (1433 trees/ha) larch canopies. The surface snowmelt rate decreased as the forest density increased. Based on the observations and energy balance analyses, we concluded the following. (1) Albedo decreased while the bulk coefficient for latent heat increased with forest density. (2) The duration of snowmelt increased with forest density because the energy for nocturnal cooling of the snow cover decreased. (3) When comparing the open and forested sites, the changes in snowmelt energy with forest density were caused by sensible heat flux. However, the contribution of net radiation was highest in the forested sites. Therefore, the effects of forest cover on the snowmelt energy were different when comparing both the open and forested sites and the sparse and densely forested sites. (4) The ratio of net radiation to snowmelt energy increased with forest density; although both snowmelt energy and net radiation decreased with increased forest density, the snowmelt energy decreased more rapidly. Sensible heat also decreased as forest density increased. Both albedo and downward long‐wave radiation influenced net radiation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
62.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   
63.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   
64.
The displacement of a relatively small reactivated landslide in a snowy area in Japan was monitored over a long period. The displacement rate of the landslide, which was approximately of 20 mm d?1 before the formation of snow cover, decelerated drastically during the continuous snow cover period every winter period. Possible causes included reduction in the amount of water that reached the ground surface (MR: meltwater and/or rainwater) and increase in snow load. Given that the actual displacement of the landslide was far below the predicted value based on the relationship between landslide displacement and MR immediately before the continuous snow cover period, the deceleration of landslide displacement was more likely attributable to the increase in snow load than to the reduction in MR. An investigation of the link between snow load and landslide displacement showed a negative logarithmic relationship. A dynamic analysis based on the limit equilibrium method showed that snow load increases the effective normal stress and the stability of a landslide in which the mean inclination angle of the slip surface is smaller than the internal friction angle. The stability of the actual slope was also analyzed by conducting soil tests on samples collected at the site and using the resultant parameters. The analysis also showed that the increase in snow load increases the safety factor and reduces the landslide displacement. The displacement of a relatively small landslide that has a shallow slip surface was found to be greatly influenced by snow cover.  相似文献   
65.
66.
The mixed layer depth (MLD) front and subduction under seasonal variability are investigated using an idealized ocean general circulation model (OGCM) with simple seasonal forcings. A sharp MLD front develops and subduction occurs at the front from late winter to early spring. The position of the MLD front agrees with the curve where \({\rm D}T_{\rm s}/{\rm D}t = \partial T_{\rm s} /\partial t + {\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) is satisfied (t is time, \({\user2{u}}_{\rm g}\) is the upper-ocean geostrophic velocity, \(T_{\rm s}\) is the sea surface temperature (SST), and \(\nabla\) is the horizontal gradient operator), indicating that thick mixed-layer water is subducted there parallel to the SST contour. This is a generalization of the past result that the MLD front coincides with the curve \({\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) when the forcing is steady. Irreversible subduction at the MLD front is limited to about 1 month, where the beginning of the irreversible subduction period agrees with the first coincidence of the MLD front and \({\rm D}T_{\rm s}/{\rm D}t =0\) in late winter, and the end of the period roughly corresponds to the disappearance of the MLD front in early spring. Subduction volume at the MLD front during this period is similar to that during 1 year in the steady-forcing model. Since the cooling of the deep mixed-layer water occurs only in winter and SST can not fully catch up with the seasonally varying reference temperature of restoring, the cooling rate of SST is reduced and the zonal gradient of the SST in the northwestern subtropical gyre is a little altered in the seasonal-forcing case. These effects result in slightly lower densities of subducted water and the eastward shift of the MLD front.  相似文献   
67.
Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (?V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative ?V t values. Coupled hydrological–chemical–mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative ?V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive ?V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.  相似文献   
68.
69.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
70.
A mammalian dentary discovered in the Coniacian Ashizawa Formation (Fukushima, northeastern Japan) is described. The specimen is a fragment of the horizontal ramus of a left edentulous dentary with five alveoli, the distal four of which are plugged with broken roots. Based on the morphologies of the dentary and the roots, it is considered to be of a therian mammal. This constitutes the first discovery of a Mesozoic mammal in northeastern Japan and highlights the potential for future mammal discoveries in the Cretaceous System in northeastern Japan, which will be significant for disclosure of the mammalian faunal evolution in East Asia during the Late Cretaceous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号