首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   16篇
  国内免费   4篇
测绘学   6篇
大气科学   27篇
地球物理   86篇
地质学   102篇
海洋学   83篇
天文学   43篇
综合类   1篇
自然地理   20篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   14篇
  2016年   10篇
  2015年   13篇
  2014年   15篇
  2013年   21篇
  2012年   17篇
  2011年   19篇
  2010年   14篇
  2009年   12篇
  2008年   17篇
  2007年   20篇
  2006年   9篇
  2005年   22篇
  2004年   15篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   12篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
151.
High-Mg diorites that have similar whole rock composition to high-Mg andesites (HMAs) should not be simply interpreted as rocks solidified from the HMA magmas, because the high-Mg diorites may be mafic cumulates derived from a different magma from the HMAs.

The HMAs contain unique clinopyroxenes with higher Mg# and Si than those of other sub-alkaline series igneous rocks. The Mg# and Si are controlled by the source magma composition rather than its crystallized conditions such as pressure and temperature. The chemical composition of clinopyroxenes would present important information for the investigation of the source of high-Mg diorites.

We considered the source of Early Cretaceous high-Mg diorites on Kyushu Island, southwest Japan arc, based on their clinopyroxene and whole rock compositions. The clinopyroxenes have similar chemical characteristics to those in HMAs rather than those in other sub-alkaline rocks. Moreover, the whole rock compositions are equivalent to the sanukitic HMA and do not show features of mafic cumulates. This indicates that the high-Mg diorites solidified from sanukitic HMA magmas. It is generally believed that the sanukitic HMA magmas involve the subduction of a young and/or hot oceanic slab was situated in their genesis. Therefore, the occurrence of the high-Mg diorites suggests that Kyushu was situated in the tectonic setting of young and/or hot slab subduction in the Early Cretaceous.  相似文献   

152.
Ion adsorption rare earth element (REE) deposits in southern China are the exclusive source of heavy REEs (HREEs) in the world, and this HREE‐enriched character of the deposits is inherited from the REE compositions of the underlying granitic rocks. Such HREE‐enriched rocks form from heavy fractionation of reduced granitic magmas. We explore why reduced granitic magmas are enriched in HREEs during the fractionation, based on the REE geochemistry of granitic rocks and abundance of REEs in their constituent minerals in the southwestern Japan arc of Cretaceous to Paleogene age. The compilation of the whole rock geochemistry and REE compositions of the granitic rocks of the Sanin (oxidized), Sanyo (reduced) and Ryoke (reduced) belts in the southwestern Japan arc indicates that: (i) light REEs (LREEs) decease with fractionation of the granitoids in the Sanin belt but this trend is not clear in the granitoids in the Sanyo belt and LREEs rather increase in the Ryoke granitoids; (ii) Eu decreases with fractionation in all the belts; and (iii) HREEs slightly, but steadily decrease in the Sanin belt but enrich significantly in the Sanyo and Ryoke belts with fractionation. Analytical results of REE concentrations by scanning electron microscope with energy dispersive X‐ray spectroscope and laser ablation‐inductively coupled plasma mass spectrometer in the constituent minerals in a granodiorite sample from the Sanin belt show a moderate concentration of REEs in hornblende (577 ppm) in addition to high concentrations in allanite (~20 %), britholite (~30 %), primary titanite (8922 ppm), apatite (4062 ppm), and zircon (1693 ppm). Because primary titanite and allanite are commonly present in the oxidized granitoids but not in the reduced ones, the REE depletion in the fractionated, oxidized granites is attributed to the crystallization of these minerals. In contrast, scarcity of these minerals in the reduced granitoids enriches REEs, in particular HREEs in the fractionated magmas, which finally precipitate REEs in the granites and pegmatites. Both positive, but different correlation ratios between the Nb and Dy concentrations in the granitoids of the Sanin and Sanyo‐Ryoke belts suggest that columbite–pyrochlore‐group and fergusonite‐group minerals are the major HREE host in the oxidized and reduced granites, respectively.  相似文献   
153.
During the five-year period (April 1981 - March 1986), a series of fifteen rock reference samples, "Igneous rock series", has been prepared by the Geological Survey of Japan (GSJ). Based on the data available (published and communicated), consensus values for major, minor and trace elements have been derived; these values are presented for this second series of samples as well as for the first series of two samples, Granodiorite JG-1 and Basalt JB-1.  相似文献   
154.
155.
156.
 A new and detailed bathymetric map of the Myojinsho shallow submarine volcano provides a framework to interpret the physical volcanology of its 1952–1953 eruption, especially how the silicic pyroclasts, both primary and reworked, enlarged the volcano and were dispersed into the surrounding marine environment. Myojinsho, 420 km south of Tokyo along the Izu–Ogasawara arc, was the site of approximately 1000 phreatomagmatic explosions during the 12.5-month eruption. These explosions shattered growing dacite domes, producing dense clasts that immediately sank into the sea; minor amounts of pumice floated on the sea surface after some of these events. The Myojinsho cone has slopes of almost precisely 21° in the depth range 300–700 m.We interpret this to be the result of angle-of-repose deposition of submarine pyroclastic gravity flows that traveled downslope in all directions. Many of these gravity flows resulted from explosions and associated dome collapse, but others were likely triggered by the remobilization of debris temporarily deposited on the summit and steep upper slopes of the cone. Tephra was repeatedly carried into air in subaerial eruption columns and fell into the sea within 1–2 km of the volcano's summit, entering water as deep as 400 m. Because the fall velocity of single particles decreased by a factor of ∼30 in passing from air into the sea, we expect that the upper part of the water column was repeatedly choked with hyperconcentrations of fallout tephra. Gravitational instabilities within these tephra-choked regions could have formed vertical density currents that descended at velocities greater than those of the individual particles they contained. Upon reaching the sea floor, many of these currents probably continued to move downslope along Myojinsho's submarine slopes. Fine tephra was elutriated from the rubbly summit of the volcano by upwelling plumes of heated seawater that persisted for the entire duration of the eruption. Ocean currents carried this tephra to distal areas, where it presumably forms a pyroclastic component of deep-sea sediment. Received: 5 December 1996 / Accepted: 17 September 1997  相似文献   
157.
158.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
159.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   
160.
Size distributions of Neocalanus cristatus, N. flemingeri and N. plumchrus were investigated in the eastern and the western subarctic gyres and three marginal seas of the North Pacific during the diapause period to examine the geographical variation in body size of Neocalanus species and to clarify the origin of the large biennial N. flemingeri which has been observed in the Oyashio region. There were significant among region variations in body sizes for all three species of Neocalanus. Generally, the body sizes of the copepods were larger in the marginal seas and marginal areas of the open ocean. In the open ocean, the body sizes increased westward. These patterns of variation in the body sizes roughly correlated with local food availability. Distribution of biennial N. flemingeri was restricted to the Sea of Japan, the Okhotsk Sea and the Oyashio region. The large-sized biennial N. flemingeri were abundantly observed in the Okhotsk Sea, and the medium-sized biennial individuals were observed in the Sea of Japan. These facts strongly suggest that the large biennial N. flemingeri in the Oyashio region are advected from the Okhotsk Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号