首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   25篇
地球物理   68篇
地质学   83篇
海洋学   81篇
天文学   19篇
综合类   1篇
自然地理   16篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   10篇
  2015年   12篇
  2014年   12篇
  2013年   19篇
  2012年   11篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   15篇
  2007年   14篇
  2006年   9篇
  2005年   18篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
101.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   
102.
A well-preserved radiolarian fauna from a clastic unit of the Khabarovsk accretionary complex (southern part of the Badzhal accretionary wedge terrane in the Russian Far East) is assigned to the basal part of the Pseudodictyomitra carpatica zone. The age of the fauna is most likely late Tithonian. This is the first reliable dating of the clastic unit and makes it possible to constrain the timing of subduction accretion in the Badzhal terrane. The Khabarovsk complex is correlated chronologically with the Bikin and Samarka terranes (Russian Far East), Mino, Southern Chichibu and North Kitakami terranes (Japan), and Nadanhada terrane (northeast China).  相似文献   
103.
104.
105.
Paleogene surface tectonics in Japan is not well understood because of the paucity of onshore Paleogene stratigraphic records except for those from accretionary complexes. Paralic Paleogene formations remaining in SW Japan are usually so thin that it is difficult to decipher the tectonics from them. However, the Eocene paralic sedimentary package with a thickness of kilometers indicates syn-depositional tectonic subsidence by a few kilometers in the Amakusa archipelago, west of Kyushu Island. Thus, we made a detailed geological map of the Eocene formations in an area of ~50 square kilometers in the northwestern part of the archipelago. We identified NE-SW and NW-SE trending normal faults, most of which were recognized by previous researchers, and also discovered low-angle faults. NW-SE trending ones are known to be of the Miocene. NE-SW trending and low-angle normal faults are the oldest map-scale structures in the Eocene ones. It is not obvious within the above-mentioned area whether those normal faults are accompanied by growth strata. However, the significant southeastward thickening of the Eocene formations across the Amakusa archipelago suggests that they filled a large half graben with the basin margin fault along the eastern side of the archipelago. This basin model is consistent with the N-S to NW-SE transport directions of the low-angle and NE-SW trending normal faults. Since many NE-SW to EW trending Eocene grabens were formed in the offshore regions west of Kyushu Island and in the East China Sea, the Amakusa region was probably a northeastern branch of the rift system. The geologic structures and depositional ages of the Eocene formations indicate that the Eocene extensional tectonics removed the overlying strata to some extent for the high-P/T Takahama Metamorphic Rocks which crops out to the south of our study area.  相似文献   
106.
The hydrological system within Earth's crust is divided into the permeable zone and the underlying, much less permeable zone. In this study, we investigated the solubility and precipitation kinetics of silica in water under the conditions of the Kakkonda geothermal field, Japan, where well WD‐1a penetrates the boundary between the hydrothermal convection zone and the heat conduction zone. We found that quartz solubility has a local minimum at the depth of the hydrological boundary, at ~3100‐m depth (380 °C and 24 MPa), in the case of either hydrostatic conditions or fluid pressure increase above hydrostatic at deeper levels. The hydrothermal experiments reveal that rapid quartz precipitation occurs via nucleation when fluids are brought from the liquid region to the supercritical region. The preferential precipitation of quartz at a specific depth plays a significant role in forming and sustaining the permeable–impermeable boundary in the crust.  相似文献   
107.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
108.
Comparison of the Lunar Radar Sounder (LRS) data to the Multiband Imager (MI) data is performed to identify the subsurface reflectors in Mare Serenitatis. The LRS is FM-CW radar (4–6 MHz) and the 2 MHz bandwidth leads to the range resolution of 75 m in a vacuum, whereas the sampling interval in the flight direction is about 75 m when an altitude of the spacecraft with polar orbit is nominal (100 km). Horizontally continuous reflectors were clearly detected by LRS in limited areas that consist of about 9% of the whole maria. The typical depth of the reflectors is estimated to be a few hundred meters. Layered structures of mare basalts are also discernible on some crater walls in the MI data of the visible bands (VIS). The VIS range has nine wavelengths of 415, 750, 900, 950, and 1000 nm, and their spatial resolution is 20 m/pixel at a nominal altitude. The stratigraphies around Bessel and Bessel-H craters in Mare Serenitatis are examined in this paper. It was revealed that the subsurface reflectors lie on the boundaries between basalt units with different chemical compositions. In addition, model calculations using the simplified radar equation indicate that the subsurface reflectors are not compositional interfaces but layer boundaries with a high-porosity contrast. These results suggest that the detected reflectors in Mare Serenitatis are regolith accumulated during so long hiatus of mare volcanisms enough for chemical composition of magma to change, not instantaneously. Therefore combination of the LRS and MI data has a potential to reveal characteristics of a series of magmatism forming each lithostratigraphic unit in Mare Serenitatis and other maria.  相似文献   
109.
A new imaging atmospheric Cherenkov telescope with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing carbon fiber reinforced plastic laminates were developed for the telescope. The reflector has a parabolic shape (f/1.1) with a 30 m2 surface area, which consists of 60 spherical mirror facets. The image size of each mirror facet is 0°.08 (FWHM) on average. The attitude of each facet can be adjusted by stepping motors. After the first in situ adjustment, a point image of about 0°.14 (FWHM) over 3° field of view was obtained. The effect of gravitational load on the optical system was confirmed to be negligible at the focal plane. The telescope has been in operation with an energy threshold for γ-rays of 300 GeV since May 1999.  相似文献   
110.
Although the study of topographic effects on the Rossby waves in a stratified ocean has a long history, the wave property over a periodic bottom topography whose lateral scale is comparable to the wavelength is still not clear. The present paper treats this problem in a two-layer ocean with one-dimensional periodic bottom topography by a simple numerical method, in which no restriction on the wavelength and/or the horizontal scale of the topography is required. The dispersion diagram is obtained for a wavenumber range of [?π/L b , π/L b ], where L b is the periodic length of the topography. When the topographic?β?is not negligible compared to the planetary β, the Rossby wave solutions around the wavenumbers which satisfy the resonant condition among the waves and topography disappear and separate into an infinite number of discrete modes. For convenience, each mode is numbered in order of frequency. As topographic height is increased, the high frequency barotropic Rossby wave (mode 1) becomes a topographic mode which can exist even on the f plane, and the highfrequency baroclinic mode (mode 2) becomes a surface intensified mode. Behaviors of low frequency modes are somewhat complicated. When the topographic amplitude is small, the low frequency baroclinic modes tend to be bottom trapped and the low frequency barotropic modes tend to be surface intensified. As topographic amplitude further increases, the relation between the mode number and vertical structure changes. This change can be attributed to the increase of the frequency of the topographic mode with the topographic amplitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号