首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   15篇
地质学   33篇
天文学   8篇
自然地理   6篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1988年   2篇
  1984年   1篇
  1980年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
The oil sands industry has committed to returning the mine sites to a productive condition. The reconstructed soil covers must have sufficient available water holding capacity (AWHC) to supply enough moisture over the growing season, to promote vegetation. In order to assess the sustainability of various soil cover alternatives, a generic, system dynamic watershed model entitled GSDW was used along with the available historical meteorological records to estimate the maximum soil moisture deficit and annual evapotranspiration fluxes. A probabilistic framework was adopted; consequently, frequency curves of the maximum annual moisture deficit values are constructed and used to assess the probability that various reconstructed and natural watersheds can provide the associated moisture demands. In general, the study showed a tendency for the reconstructed watershed to provide less moisture for evapotranspiration than natural systems. Watersheds of various soil types, layering, thicknesses and topography were studied. The gained knowledge was used to predict the possible performance of a hypothetical reclamation cover. The results indicated that the hypothetical cover performed in a similar manner to the thickest existing soil cover which confirmed a high probability of that cover to survive under the same existing climatic conditions. Moreover, this probabilistic framework was found to be useful for integrating information gained from natural watersheds (e.g. the canopy of mature natural systems and transfer the results to the reconstructed system). The results show that the canopy influenced the moisture deficit regime positively which signifies a greater possibility that reconstructed covers will adapt to vegetation type. In brief, the adopted approach enables better understanding of the response of reconstructed systems via multiple simulations of ‘what‐if’ scenarios using different soil/vegetation alternatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
22.
23.
Pipelines buried in saturated sand deposits, during earthquake loading could damage from resulting uplift due to excess pore water pressure generation. Several studies have been made to better understand the uplift mechanism and evaluate the effectiveness of mitigating techniques through experiment, but little numerical works have been done to assess the influence of soil properties and field conditions in pipeline floatation. Especially for previously buried pipelines, in order to set the priority for seismic retrofit, evaluating the risk of floatation in each region could be a concern. In this paper, effects of several parameters including dilatancy angle and density ratio of natural soil, diameter and burial depth of pipe, underground water table and thickness of the saturated soil layer on uplift of pipe have been investigated. Results show the prominent role of burial depth in pipe response and that there exits an optimum level for drop of water table to reduce floatation.  相似文献   
24.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   
25.
Climate change will affect the regional ability to achieve the poverty reduction and sustainable development (SD) objectives. Thus, any action plans to achieve these objectives should make climate change policies an integral part of the development planning process. The best practices and measures of climate change policies should be implemented to ensure regional or community sustainability. In this paper, a case study that promotes the integration of carbon sequestration into sustainable forest management and rural development plan with multi-stakeholders participation is introduced. To achieve SD goals, appropriate tools and methods are required to address impacts of alternative forest land uses on carbon sequestration and rural sustainability, and to prioritise land use options. A range of forest land use scenarios that address various aspects of the forest carbon sequestration rate and rural sustainability are evaluated against a SD indicator system. Planting vegetation is one of the practical approaches in mitigating global warming by sequestrating carbon from the atmosphere to plant matter and soil. In order to protect environment, reduce excessive soil erosion, and decrease the propensity and frequency of flooding and other natural disasters, China has initiated nationwide pivotal projects such as “Grain for Green” to mitigate exacerbated environmental deterioration and degradation. Such ecological programs may affect the socio-economic livelihoods of peasants and the economic activities of the whole region. The impact and economic uncertainty associated with such projects urge policy makers to include all stakeholders in the decision making process so that an agreeable solution towards sustainable rural development can be identified. This study uses Liping County in Guizhou province as a case study to identify a consensus among peasants regarding planting selected tree-species. Analytic hierarchy process (AHP) is used as a multicriteria decision making tool to rank sustainability criteria and determine the priority of options. The method helps policy makers to understand what the peasants want to achieve by participating in a Grain for Green program and what their priorities are with respect to particular types of vegetation. The case study finds that economic and financial concerns are the most important drivers of the decision of which trees to plant among the peasants who took part in the implementation of the Grain for Green program. As a result of this, Gingko, redpine, and Chinese chestnut were the predominant trees planted under the program. The integrated assessment based on the AHP method provides an effective tool to help understand how economic, social and environmental factors are related to each other in affecting the nature of rural sustainability.  相似文献   
26.
27.
In this paper, we present an operational model to estimate the actual evapotranspiration (ET) of crops cultivated on hilly terrains. This new model has the following three characteristics: (1) ET modelling is based on a Penman?CMonteith (PM) type equation (Monteith 1965) where canopy resistance is simulated by following an approach already illustrated by Katerji and Perrier (Agronomie 3(6):513?C521, 1983); (2) the estimation of ET, by means of the PM equation, is made by using meteorological variables simulated on sloped sites as input; (3) these variables are simulated by using simple relationships linking the variables measured at a reference site on plane to the topographic characteristics of the site (slope, orientation, altitude as difference between reference, and sloped sites). This approach presents two advantages if compared with previously proposed models: Not only computation steps are greatly simplified but also error sources due to the simulation of climatic variables in sloped sites and the ET estimation are well distinguished. This model was validated at hourly and daily scales at four sites cultivated with wheat and oats offering a wide range of slope and orientation values: a reference site on plane, site 1 (9° sloping, NW orientation, 7 m from the reference site in plane), site 2 (6°, SE, 12 m) and site 3 (1°, SE, 18 m). At hourly scale, the new model performed well at all sites studied. The observed slope of the linear relationships between estimated and measured ET values ranged between 0.93 and 1.03, with coefficients of determination, r 2, between 0.80 and 0.98. At daily scale, the slopes of the linear relationships between measured and estimated ET for the sites on plane and the sloped sites were practically the same (0.98?±?0.01); however, the coefficient of determination r 2 observed in the site on plane was clearly greater (0.98) than that observed in the sloped sites (0.83). The presented analysis does not show any significant systematic effect of topography (slope and orientation of the plots) on the good performance of the proposed model for the ET estimation. Furthermore, we observed that coefficients of determination tend to decrease with the increase in the slope of the site, which translates into increased inaccuracy of the climatic variables simulation, in particular the net radiation, as the slope of the site increases. The proposed model allows to verify the different steps for calculating the fluxes, to identify the eventual sources of error and to make the needed corrections. For this reasons, the proposed model seems to be particularly ??operational??, i.e. a useful tool for estimating fluxes on hilly terrains.  相似文献   
28.
The pull-out resistance of reinforcing elements is one of the most significant factors in increasing the bearing capacity of geosynthetic reinforced soils. In this research a new reinforcing element that includes elements (anchors) attached to ordinary geogrid for increasing the pull-out resistance of reinforcements is introduced. Reinforcement therefore consists of geogrid and anchors with cubic elements that attached to the geogrid, named (by the authors) Grid-Anchor. A total of 45 load tests were performed to investigate the bearing capacity of square footing on sand reinforced with this system. The effect of depth of the first reinforcement layer, the vertical spacing, the number and width of reinforcement layers, the distance that anchors are effective, effect of relative density, low strain stiffness and stiffness after local shear were investigated. Laboratory tests showed that when a single layer of reinforcement is used there is an optimum reinforcement embedment depth for which the bearing capacity is the greatest. There also appeared to be an optimum vertical spacing of reinforcing layers for multi-layer reinforced sand. The bearing capacity was also found to increase with increasing number of reinforcement layer, if the reinforcement were placed within a range of effective depth. The effect of soil density also is investigated. Finally the results were compared with the bearing capacity of footings on non-reinforced sand and sand reinforced with ordinary geogrid and the advantages of the Grid-Anchor were highlighted. Test results indicated that the use of Grid-Anchor to reinforce the sand increased the ultimate bearing capacity of shallow square footing by a factor of 3.0 and 1.8 times compared to that for un-reinforced soil and soil reinforced with ordinary geogrid, respectively.  相似文献   
29.
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.  相似文献   
30.
Ore grade is the most important source of uncertainty in a mining operation which plays an important role to classify run-of-mine (ROM) material into ore and waste parcels. As a widely used method, kriging estimator is used to estimate the grade of ore blocks. In conventional mining practices, if the estimated grade of a parcel is above the cut-off grade, this parcel is classified as ore, otherwise, is labelled as a waste parcel. An alternative approach is to simultaneously consider the grade of parcels and the economic consequences of sending parcels to destinations by applying simulation-based methods. In this study, kriging and simulation-based methods including loss and profit functions are applied on a real-world case study to classify ore/waste material based on the initial exploration data. Then, the actual known data, collected from blast holes samples, are compared with the estimated results in order to validate the performance of the presented methods. Outcomes show that simulation-based methods can perform better and show more adjustability with real data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号