首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
测绘学   1篇
大气科学   11篇
地球物理   2篇
地质学   9篇
海洋学   3篇
天文学   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2014年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   
12.
The paper presents a series of analytical and numerical investigations of oblique wave transmission at low-crested breakwaters. For a smooth breakwater, two important features of wave height and direction are analyzed to establish the generic nature of the wave transmission process at oblique incidence. The proposed framework of research is validated against laboratory data from the EU-sponsored project, DELOS. The numerical simulations exhibit a significant decrease of the transmission coefficient with increasingly oblique incidence at a smooth breakwater. The roles of wave-breaking, nonlinearity, wave-induced currents and set-up in determining the characteristics of oblique wave transmission are demonstrated in the paper. It is found that both the amplitude-dependent phase velocity and the decrease of mean wave period contribute to the change of mean wave direction on the transmission side. An attempt has also been made to qualitatively explain the different behaviour of oblique wave transmission at a rubble-mound breakwater.  相似文献   
13.

The Indian landmass has been divided into homogeneous clusters by applying the cluster analysis to the probability density function of a century-long time series of daily summer monsoon (June through September) rainfall at 357 grids over India, each of approximately 100 km × 100 km. The analysis gives five clusters over Indian landmass; only cluster 5 happened to be the contiguous region and all other clusters are dispersed away which confirms the erratic behavior of daily rainfall over India. The area averaged seasonal rainfall over cluster 5 has a very strong relationship with Indian summer monsoon rainfall; also, the rainfall variability over this region is modulated by the most important mode of climate system, i.e., El Nino Southern Oscillation (ENSO). This cluster could be considered as the representative of the entire Indian landmass to examine monsoon variability. The two-sample Kolmogorov-Smirnov test supports that the cumulative distribution functions of daily rainfall over cluster 5 and India as a whole do not differ significantly. The clustering algorithm is also applied to two time epochs 1901–1975 and 1976–2010 to examine the possible changes in clusters in a recent warming period. The clusters are drastically different in two time periods. They are more dispersed in recent period implying the more erroneous distribution of daily rainfall in recent period.

  相似文献   
14.
15.
Evaluation of weather forecasting systems and assessment of existing verification procedures are essential to achieve desirable seamless rainfall prediction. Prediction of wet and dry spells is quite useful in agriculture and hydrology but very few attempts have been made so far to resolve the issue using numerical model output. Performance of five state-of-the-art global atmospheric general circulation models and their ensemble mean has been examined in predicting the parameters of wet and dry spells (WSs/DSs) during monsoon period of 2008–2011 over seven subzones of the Indian region. The number of WSs across the region is found to be underestimated, while total duration and rainfall amount of WSs (DSs) overestimated (underestimated). Start of the first WS is late and ends of the last WS early in the model forecast. More uncertainty is noticed in the prediction of DS rainfall and its duration than that of the WS. The percentage area of India under wet conditions (rainfall amount over each grid is more than its daily mean monsoon rainfall) and rainwater over the wet area is overestimated by about 59 and 32 %, respectively, in all models.  相似文献   
16.
Our long-term study provides an unequivocal evidence for near-quantitative (80–100%) depletion of chloride from sea-salts in the marine atmospheric boundary layer (MABL) of tropical Bay of Bengal. During the late NE-monsoon (Jan-Mar), continental outflow from south and south-east Asia dominate the wide-spread dispersal of pollutants over the Bay of Bengal. Among anthropogenic constituents, SO 4 2? (range: 0.6–35 μg m?3) is the most dominant. The non-sea-salt SO 4 2? (nss-SO 4 2? ) constitutes a major fraction (55–65%) of the aerosol water-soluble ionic composition (WSIC), whereas contribution of NO 3 ? is relatively minor. The magnitude of Cl-deficit (with respect to its sea-salt proportion) exhibits linear increase with the excess-nss-SO 4 2? (excess over NH 4 + ). We propose that displacement of HCl from sea-salt aerosols by H2SO4 is a dominant reaction mechanism for the chloride-depletion. These results also suggest that sea-salts could serve as a potential sink for anthropogenic SO2 in the downwind polluted marine environment. Furthermore, loss of hydrogen chloride, representing a large source of reactive chlorine, has implications to the oxidant chemistry in the MABL (oxidation of hydrocarbons and dimethyl sulphide).  相似文献   
17.
Weakening of Indian summer monsoon rainfall in warming environment   总被引:1,自引:1,他引:0  
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   
18.
Origin of Life     
The evolution of life has been a big enigma despite rapid advancements in the field of astrobiology, microbiology and genetics in recent years. The answer to this puzzle is as mindboggling as the riddle relating to evolution of the universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the earth and elsewhere in the universe, the issue, however, remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life-like abiogenesis, RNA world, iron–sulphur world and panspermia, and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.  相似文献   
19.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   
20.
Automatic road extraction from remotely sensed images has been an active research in urban area during last few decades. But such study becomes difficult in urban environment due to mix of natural and man-made features. This research explores methodology for semiautomatic extraction of urban roads. An integrated approach of airborne laser scanning (ALS) altimetry and high-resolution data has been used to extract road and differentiate them from flyovers. Object oriented fuzzy rule based approach classifies roads from high resolution satellite images. Complete road network is extracted with the combination of ALS and high-resolution data. The results show that an integration of LiDAR data and IKONOS data gives better accuracy for automatic road extraction. The method was applied on urban area of Amsterdam, The Netherlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号