首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   15篇
  国内免费   1篇
测绘学   18篇
大气科学   38篇
地球物理   113篇
地质学   72篇
海洋学   49篇
天文学   69篇
综合类   1篇
自然地理   17篇
  2020年   3篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   14篇
  2008年   15篇
  2007年   13篇
  2006年   6篇
  2005年   9篇
  2004年   11篇
  2003年   4篇
  2002年   11篇
  2001年   6篇
  2000年   7篇
  1999年   13篇
  1998年   13篇
  1997年   6篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   11篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   7篇
  1975年   3篇
  1973年   3篇
  1972年   3篇
  1970年   4篇
  1962年   3篇
  1953年   3篇
  1949年   3篇
排序方式: 共有377条查询结果,搜索用时 31 毫秒
141.
This paper presents the textural, mineralogical and chemical study of veinlets cross-cutting peridotite xenoliths from the lithospheric mantle and brought to the surface by alkaline basalts (Persani Mountains, Romania). The veinlets utilized pre-existing zones of weakness in the host rocks or display a random distribution, lining grain boundaries or cross-cutting any mineral, and always forming an interconnected network. They are filled with carbonate patches included in a silicate matrix. Both products are holocrystalline. Carbonate products have alkali-poor calciocarbonatitic to sövitic compositions, while the silicate matrix composition ranges from monzodioritic to monzonitic and alkali feldspar syenitic, depending on the host-sample, i.e., within a rather alkaline silica-saturated series. The mineral phases present in the silicate matrix (F-apatite, armalcolite, chromite, diopside–enstatite series, plagioclase–sanidine series) are usually present in the carbonate zones, where forsterite is also found. Some minerals cross-cut the interface between both types of zones. Only the matrix is different, feldspathic (oligoclase to sanidine) in the former and pure calcite in the latter. Thus, mineralogical and textural relationships between both products are consistent with an origin with equilibrium liquid immiscibility. Mantle minerals cross-cut by veinlets are sometimes resorbed at grain boundaries, and at the contact of the most alkaline silicate and carbonate melts, subhedral diopside/augite formed at the expense of mantle enstatite or olivine. In terms of mineral chemistry, the compositional variations recorded by vein minerals vary along a continuous trend. They generally superpose to those observed from lherzolites to harzburgites, and exhibit the same range of composition as that observed between rims and cores of mantle minerals cross-cut by veinlets. In detail, the Ca-rich pyroxenes of veinlets are Al-poor and Mg-rich; cpx in the carbonate zones are slightly more Ca-rich than those in the silicate matrix; spinels are relatively Al- and Mg-poor but rather Cr- and Fe-rich. Existence of only one titanium oxide (armalcolite) and various pairs of pyroxenes suggest crystallization temperatures in the range 1100–1200°C and pressures between 10–15 kb. Feldspar compositions in silicate materials, which vary continuously from labradorite to sanidine, are consistent with hypersolvus and dry crystallization conditions. All of these results provide evidence that immiscibility occurred at mantle depth as the liquid was forcibly injected during hydraulic fracturing of the mantle. The compositions of conjugate melts suggest a very large miscibility gap, as expected at high pressure in a dry environment from the experiments of Kjarsgaard and Hamilton [Kjarsgaard, B.A., Hamilton, D.L., 1988. Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral. Mag. 52, 43–55; Kjarsgaard, B.A., Hamilton, D.L., 1989. The genesis of carbonatites by immiscibility. In: Bell, K. (Ed.), Carbonatites: Genesis and Evolution. Unwyn Hyman, London, pp. 388–404.]. The parental melt was carbonate, silica-undersaturated and rich in F, Cl and CO2. Both immiscible melts were water-undersaturated. The cooling rate until total crystallization in veinlets was very slow, limited and necessarily occurred at mantle depth. Wall rock reactions leading to the formation of Ca-rich pyroxene at the expense of mantle enstatite or olivine occurred only at the contact with somewhat alkali-rich carbonatitic or silicate melts. Calcite, always anhedral, is the last mineral to crystallize. It is a differentiation product formed by magmatic crystallization or wall rock reaction. In some cases, given the rarity of any other minerals, it may be the product of the crystallization of a pure sövite immiscible melt.  相似文献   
142.
For the presentation and analysis of atmospheric boundary-layer (ABL) data, scales are used to non-dimensionalise the observed quantities and independent variables. Usually, the ABL height, surface sensible heat flux and surface scalar flux are used. This works well, so long as the absolute values of the entrainment ratio for both the scalar and temperature are similar. The entrainment ratio for temperature naturally ranges from −0.4 to −0.1. However, the entrainment ratio for passive scalars can vary widely in magnitude and sign. Then the entrainment flux becomes relevant as well. The only customary scalar scale that takes into account both the surface flux and the entrainment flux is the bulk scalar scale, but this scale is not well-behaved for large negative entrainment ratios and for an entrainment ratio equal to −1. We derive a new scalar scale, using previously published large-eddy simulation results for the convective ABL. The scale is derived under the constraint that scaled scalar variance profiles are similar at those heights where the variance producing mechanisms are identical (i.e., either near the entrainment layer or near the surface). The new scale takes into account that scalar variance in the ABL is not only related to the surface flux of that scalar, but to the scalar entrainment flux as well. Furthermore, it takes into account that the production of variance by the entrainment flux is an order of magnitude larger than the production of variance by the surface flux (per unit flux). Other desirable features of the new scale are that it is always positive (which is relevant when scaling standard deviations) and that the scaled variances are always of order 1–10.  相似文献   
143.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   
144.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
145.
146.
147.
Saint-Hilaire  Pascal  Benz  Arnold O. 《Solar physics》2003,216(1-2):205-224
We investigate temporal and spatial correlations in solar flares of hard X-rays (HXR) and decimetric continuum emissions, ejecta, and CMEs. The focus is on three M-class flares, supported by observations from other flares. The main conclusions of our observations are that (1) major hard X-ray flares are often associated with ejecta seen in soft X-rays or EUV. (2) Those ejecta seem to start before HXR or related decimetric radio continua (DCIM emission). (3) DCIM occurring nearly simultaneously with the first HXR peak are located very close to the HXR source. Later in the flare, DCIM generally becomes stronger, drifts to lower frequency and occurs far from the HXR source. Thus the positions at high frequency are generally closer to the HXR source. DCIM emission consists of pulses that drift in frequency. The very high and sometimes positive drift rate suggests spatially extended sources or type III like beams in an inhomogeneous source. Movies of selected flares used in this study can be found on the CD-ROM accompanying this volume. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1026194227110  相似文献   
148.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
149.
A regularization of Kepler's problem due to Moser is used to ‘stabilize’ the equations of motion, that is, imbed a particular solution of Kepler's problem in a Lyapounov stable system.  相似文献   
150.
The influence of glacier hydrology on the time-dependent morphology and flow behaviour of the late Weichselian Scandinavian ice sheet is explored using a simple one-dimensional ice sheet model. The model is driven by orbitally induced radiation variations, ice-albedo feedback and eustatic sea-level change. The influence of hydrology is most marked during deglaciation and on the southern side of the ice sheet, where a marginal zone of rapid sliding, thin ice and low surface slopes develops. Such a zone is absent when hydrology is omitted from the model, and its formation results in earlier and more rapid deglaciation than occurs in the no-hydrology model. The final advance to the glacial maximum position results from an increase in the rate of basal sliding as climate warms after 23000 yr BP. Channelised subglacial drainage develops only episodically, and is associated with relatively low meltwater discharges and high hydraulic gradients. The predominance of iceberg calving as an ablation mechanism on the northern side of the ice sheet restricts the occurrence of surface melting. Lack of meltwater penetration to the glacier bed in this area means that ice flow is predominantly by internal deformation and the ice sheet adopts a classical parabolic surface profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号