首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   6篇
  国内免费   3篇
测绘学   13篇
大气科学   18篇
地球物理   43篇
地质学   72篇
海洋学   30篇
天文学   21篇
自然地理   11篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2013年   15篇
  2012年   11篇
  2011年   2篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1992年   2篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   7篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1965年   1篇
  1963年   2篇
  1962年   2篇
  1958年   1篇
  1956年   1篇
  1951年   1篇
  1934年   1篇
排序方式: 共有208条查询结果,搜索用时 328 毫秒
31.
The Pillara Zn–Pb deposit is the largest of several known Mississippi Valley-type (MVT) deposits in the Lennard Shelf of the Canning Basin. Paleomagnetic and rock magnetic measurements are reported for 294 specimens from 23 sites in mineralization and its carbonate host rocks from the deposit as well as on 15 artificial specimens of zinc and lead concentrate and of tailings. Pyrrhotite carries the characteristic remanent magnetization (ChRM) in nearly all specimens. The ChRM postdates most faulting as shown by breccia tests and most minor regional tilting as shown by the degraded fit on tilt correction. The mean ChRM direction for all sites is D=20.6°, I=–27.5° (N=23, 95=5.3°, k=34.1), yielding an age of 358±5 Ma (2) that is similar to the comparable age of 354±8 Ma (2) for the Kapok MVT deposit. Host rock diagenesis with attendant secondary remagnetization yields an age of 361±5 Ma (1) and the MVT mineralization with a primary chemical remanent magnetization gives an age of 356±3 Ma (1), co-eval with a published Rb–Sr sphalerite age of 357±3 Ma. Interpretation of this temporal data suggests that the MVT deposits of the southeastern Lennard Shelf originated during extension, probably in response to rift-related topography-driven fluid flow.Editorial handling: C. Brauhart  相似文献   
32.
A numerical application to the extreme cases of high and low degree of ionization of the binary collision theory of Burgers (1960) and the multiple collision theory of Shkarofsky (1960) shows very good agreement in the values of the magnetic tensor components for solar electrical conductivity. It is pointed out that the inclusion of ion motions in Burgers theory favors its use in the future evaluation of the solar thermal conductivity tensor.The research reported in this paper was sponsored by the Air Force Cambridge Research Laboratories, AFSC, under Contract F19628-70-C-0192-P00001, but the report does not necessarily reflect endorsement by the sponsor.  相似文献   
33.
Summary On Diego de Almagro Island in Chilean Patagonia (51°30S), a convergent strike slip zone, the Seno Arcabuz shear zone, separates the Diego de Almagro Metamorphic Complex from very low grade metagreywackes in the east, which were intruded by Jurassic granitoids. The Diego de Almagro Metamorphic Complex is composed of a metapsammopelitic sequence containing blueschist intercalations in the west and (garnet) amphibolite lenses in the east. Peak metamorphic conditions (stage I) at 9.5–13.5kbar, 380–450°C in the blueschist and at 11.2–13.2, 460–565°C in the amphibolite indicate subduction and accretion at different positions within the deepest part of the accretionary wedge. A K–Ar age of 117±28Ma of amphibole approximately dates the peak of metamorphism in the amphibolite. The early retrograde stage of metamorphism occurred under static conditions and resulted in localized equilibration (stage II) at 6.3–9.6kbar, 320–385°C in the blueschist and 6.1–8.4kbar, 310–504°C in the amphibolite. Both P-T paths converge within a midcrustal level.In contrast, an orthogneiss of trondhjemitic composition occurring within the Seno Arcabuz shear zone is associated with a garnet mica-schist containing a high temperature/intermediate pressure assemblage formed at 4.9–6.5kbar, 580–690°C. A muscovite K–Ar age of 122.2±4.6Ma dates cooling after this event which is related to a concomitant magmatic arc. These rocks were overprinted by a mylonitic deformation, which is caused by convergent strike slip shearing and ends during formation of a retrograde phengite-chlorite-stilpnomelane assemblage at a minimum pressure of approximately 5.7kbar (at 300°C).Zircon fission track ages from rocks of the Seno Arcabuz shear zone are 64.9±2.7 and 64.9±2.7Ma; they record the end of shearing in the Seno Arcabuz shear zone that juxtaposed all rocks in the middle crust. Zircon fission track ages ranging from 78 to 105Ma in the South Patagonian batholith to the east indicate earlier cooling through 280°C. The rocks of the Diego de Almagro Metamorphic Complex were initially slowly exhumed and resided at a midcrustal level before being emplaced via shearing in the Seno Arcabuz shear zone. Apatite fission track ages (54±8Ma) from the Seno Arcabuz shear zone show that exhumation and cooling rates increased after this event. The incorporation of continental crust within the subduction system was a late process, which modified the Cretaceous accretionary wedge, resulting in considerable shortening of the convergent margin.  相似文献   
34.
The climate cooling and vegetation changes in the Miocene/Pliocene are generally well documented by various proxy data. Some important ecosystem changes occurred at that time. Palaeobotanical evidence suggests that the Sahara desert first appeared in the Pliocene, whereas in the Miocene North Africa was green. In the present study, we investigate the Late Miocene climate response to the appearance of the Sahara desert from a climate modelling sensitivity experiment. We compare a model experiment, which includes a full set of Late Miocene boundary conditions, with another one using the same boundary conditions except that the North African vegetation refers to the present-day situation. Our sensitivity study demonstrates that the introduction of the Sahara desert leads to a cooling and an aridification in Africa. In addition, we observe teleconnection patterns related to the North African desertification at around the Miocene/Pliocene boundary. From our sensitivity experiment, we observe that the Sahara contributes to a cooling in Central Asia and in North America. As compared to hypsodonty data for Central Asia, an increased aridity is underestimated in the Sahara experiment. Finally, we observe that the introduction of the Sahara leads to a cooling in the northern high latitudes. Hence, our sensitivity experiment indicates that the appearance of the Sahara desert is one piece to better understand Late Cenozoic climate cooling being most pronounced in the high latitudes.  相似文献   
35.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
36.
Researchers often measure human–place bonds via place attachment scales across a variety of settings. However, scale use does not always include an evaluation of the scales’ psychometric properties, especially in multisite studies. Failure to consider a place attachment scale’s measurement properties makes both validity and reliability assumptions and may lead to improper data interpretation. Hence, this investigation assessed a place attachment scale across three sites via data collected on site in natural resource protected areas in Colorado, Minnesota, and Germany. A series of confirmatory factor analyses assessed the hypothesized two-dimensional (i.e., place identity and place dependence) model, Cronbach’s alphas calculated a measure of internal consistency, and a multigroup procedure cross-validated the scale. Some items did not load on the hypothesized dimension and the pattern of factor loadings was not equivalent across settings, suggesting assessment of place attachment scales may be necessary when used in new contexts.  相似文献   
37.
Spatial constrained inverse rock physics modelling   总被引:1,自引:0,他引:1       下载免费PDF全文
Predicting reservoir parameters, such as porosity, lithology, and saturations, from geophysical parameters is a problem with non‐unique solutions. The variance in solutions can be extensive, especially for saturation and lithology. However, the reservoir parameters will typically vary smoothly within certain zones—in vertical and horizontal directions. In this work, we integrate spatial correlations in the predicted parameters to constrain the range of predicted solutions from a particular type of inverse rock physics modelling method. Our analysis is based on well‐log data from the Glitne field, where vertical correlations with depth are expected. It was found that the reservoir parameters with the shortest depth correlation (lithology and saturation) provided the strongest constraint to the set of solutions. In addition, due to the interdependence between the reservoir parameters, constraining the predictions by the spatial correlation of one parameter also reduced the number of predictions of the other two parameters. Moreover, the use of additional constraints such as measured log data at specific depth locations can further narrow the range of solutions.  相似文献   
38.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   
39.
This paper analyses the trends and the future projections of significant wave height in several ocean areas at different parts of the world. It uses a stochastic Bayesian hierarchical space-time model, with a regression component with atmospheric levels of CO2 as covariates in order to estimate the expected long-term trends and make future projections towards the year 2100. The model was initially developed for an area in the North Atlantic ocean, and has been found to perform reasonably well there, and it is now investigated how the model performs for other ocean areas. 11 new ocean areas have been analysed with the model, and this paper presents the results pertaining to the estimated long-term trends and future projections of monthly maximum significant wave height for each of the 12 ocean areas.  相似文献   
40.
Climate impact of high northern vegetation: Late Miocene and present   总被引:1,自引:0,他引:1  
The Late Miocene belongs to the late phase of the Cenozoic. Climate at that time was still warmer and more humid as compared to today, especially in the high latitudes. Corresponding to the climate situation, palaeobotanical evidences support that vegetation in the high northern latitudes changed significantly from the Late Miocene until today. To quantify the climate impact of this vegetation change, we analyse how vegetation in the high northern latitudes contribute to climate evolution. For that, we perform climate modelling sensitivity experiments for the present and for the Late Miocene (Tortonian, 11–7 Ma). For our present-day sensitivity experiment, we introduce the Tortonian vegetation in the high northern latitudes. For our Tortonian sensitivity experiment, we introduce the modern vegetation on the same grid cells. In the Tortonian and in the present, the modern vegetation leads to a strong cooling of the northern extratropics (up to −4°C). Nevertheless, the meridional heat transports remain nearly unchanged in both cases. In general, the vegetation impact on climate is similar in the Tortonian and in the present. However, some exceptions occur. Due to the Tethys Ocean in the Tortonian, temperatures decline only weakly in eastern Europe and western Asia. In the Tortonian climate, temperatures on the Sahara realm rise (up to +1.5°C), while the temperatures do not change remarkably in the present-day climate. This different behaviour is caused by a stronger and more sensitive hydrological cycle on the Sahara region during the Tortonian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号