首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   6篇
  国内免费   3篇
测绘学   13篇
大气科学   34篇
地球物理   59篇
地质学   76篇
海洋学   31篇
天文学   19篇
自然地理   16篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   2篇
  2013年   24篇
  2012年   15篇
  2011年   3篇
  2010年   10篇
  2009年   16篇
  2008年   13篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  1999年   4篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1985年   6篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   8篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1965年   1篇
  1963年   2篇
  1962年   2篇
  1958年   1篇
  1956年   1篇
  1951年   1篇
  1934年   1篇
排序方式: 共有248条查询结果,搜索用时 31 毫秒
231.
For the Tortonian, Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] perform a model simulation which considers a generally lower palaeorography, a weaker ocean heat transport and an atmospheric CO2 concentration of 353 ppm. The Tortonian simulation of Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] demonstrates some realistic trends: the high latitudes are warmer than today and the meridional temperature gradient is reduced. However, the Tortonian run also indicates some insufficiencies such as too cool mid-latitudes which can be due to an underestimated pCO2 in the atmosphere. As a sensitivity study, we perform a further model experiment for which we additionally increase the atmospheric carbon dioxide (700 ppm). According to this CO2 sensitivity experiment, we find a global warming and a globally more intense water cycle as compared to the previous Tortonian run. Particularly the high latitudes are warmer in the Tortonian CO2 sensitivity run which leads to a lower amount of Arctic sea ice and a reduced equator-to-pole temperature difference. Our Tortonian CO2 sensitivity study basically agrees with results from recent climate model experiments which consider an increase of CO2 during the next century (e.g. [Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S., Yap, K.S., 2001. Projections of Future Climate Change. In: Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 525–582]) suggesting that the climatic response on a higher atmospheric CO2 concentration is almost independent from the different settings of boundary conditions (Tortonian versus today). To validate the Tortonian model simulations, we perform a quantitative comparison with terrestrial proxy data. This comparison demonstrates that the Tortonian CO2 sensitivity experiment tends to be more realistic than the previous Tortonian simulation by Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423]. However, a high carbon dioxide concentration of 700 ppm is questionable for the Late Miocene, and it cannot explain shortcomings of our Tortonian run with ‘normal’ CO2. In order to fully understand the Late Miocene climate, further model experiments should also consider the palaeovegetation.  相似文献   
232.
We propose a new method to investigate the relationships between neighbouring crystals and apply it to the textures measured along the upper 900 m of the NorthGRIP ice core. This method shows unexpected correlations between neighbours in the so-called normal grain growth regime, questioning the classical view on the onset of rotation recrystallization in ice-sheets. Moreover, the fractionation rate associated to the rotation recrystallization appears constant through time. Finally, grains with low-angle boundaries do not present a special distribution pattern of their c-axes. This suggests that rotation recrystallization is an isotropic process not affected by the direction of the macroscopic strain.  相似文献   
233.
Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere–ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.  相似文献   
234.
235.
Long-term trends in the ocean wave climate because of global warming are of major concern to many stakeholders within the maritime industries, and there is a need to take severe sea state conditions into account in design of marine structures and in marine operations. Various stochastic models of significant wave height are reported in the literature, but most are based on point measurements without exploiting the flexible framework of Bayesian hierarchical space–time models. This framework allows modelling of complex dependence structures in space and time and incorporation of physical features and prior knowledge, yet remains intuitive and easily interpreted. This paper presents a Bayesian hierarchical space–time model with a log-transform for significant wave height data for an area in the North Atlantic ocean. The different components of the model will be outlined, and the results from applying the model to data of different temporal resolutions will be discussed. Different model alternatives have been tried and long-term trends in the data have been identified for all model alternatives. Overall, these trends are in reasonable agreement and also agree fairly well with previous studies. The log-transform was included in order to account for observed heteroscedasticity in the data, and results are compared to previous results where a similar model was employed without a log-transform. Furthermore, a discussion of possible extensions to the model, e.g. incorporating regression terms with relevant meteorological data, will be presented.  相似文献   
236.
Forecasting search areas using ensemble ocean circulation modeling   总被引:1,自引:1,他引:0  
We investigate trajectory forecasting as an application of ocean circulation ensemble modeling. The ensemble simulations are performed weekly, starting with assimilation of data for various variables from multiple sensors on a range of observational platforms. The ensemble is constructed from 100 members, and member no. 1 is designed as a standard (deterministic) simulation, providing us with a benchmark for the study. We demonstrate the value of the ensemble approach by validating simulated trajectories using data from ocean surface drifting buoys. We find that the ensemble average trajectories are generally closer to the observed trajectories than the corresponding results from a deterministic forecast. We also investigate an alternative model in which velocity perturbations are added to the deterministic results and ensemble mean results, by a first-order stochastic process. The parameters of the stochastic model are tuned to match the dispersion of the ensemble approach. Search areas from the stochastic model give a higher hit ratio of the observations than the results based on the ensemble. However, we find that this is a consequence of a positive skew of the area distribution of the convex hulls of the ensemble trajectory end points.  相似文献   
237.
Global atmosphere-ocean general circulation models are the tool by which projections for climate changes due to radiative forcing scenarios have been produced. Further, regional atmospheric downscaling of the global models may be applied in order to evaluate the details in, e.g., temperature and precipitation patterns. Similarly, detailed regional information is needed in order to assess the implications of future climate change for the marine ecosystems. However, regional results for climate change in the ocean are sparse. We present the results for the circulation and hydrography of the Barents Sea from the ocean component of two global models and from a corresponding pair of regional model configurations. The global models used are the GISS AOM and the NCAR CCSM3. The ROMS ocean model is used for the regional downscaling of these results (ROMS-G and ROMS-N configurations, respectively). This investigation was undertaken in order to shed light on two questions that are essential in the context of regional ocean projections: (1) How should a regional model be set up in order to take advantage of the results from global projections; (2) What limits to quality in the results of regional models are imposed by the quality of global models? We approached the first question by initializing the ocean model in the control simulation by a realistic ocean analysis and specifying air-sea fluxes according to the results from the global models. For the projection simulation, the global models’ oceanic anomalies from their control simulation results were added upon initialization. Regarding the second question, the present set of simulations includes regional downscalings of the present-day climate as well as projected climate change. Thus, we study separately how downscaling changes the results in the control climate case, and how scenario results are changed. For the present-day climate, we find that downscaling reduces the differences in the Barents Sea between the original global models. Furthermore, the downscaled results are closer to observations. On the other hand, the downscaled results from the scenario simulations are significantly different: while the heat transport into the Barents Sea and the salinity distribution change modestly from control to scenario with ROMS-G, in ROMS-N the heat transport is much larger in the scenario simulation, and the water masses become much less saline. The lack of robustness in the results from the scenario simulations leads us to conclude that the results for the regional oceanic response to changes in the radiative forcing depend on the choice of AOGCM and is not settled. Consequently, the effect of climate change on the marine ecosystem of the Barents Sea is anything but certain.  相似文献   
238.
This paper tests the ability of various rock physics models to predict seismic velocities in shallow unconsolidated sands by comparing the estimates to P and S sonic logs collected in a shallow sand layer and ultrasonic laboratory data of an unconsolidated sand sample. The model fits are also evaluated with respect to the conventional model for unconsolidated sand. Our main approach is to use Hertz‐Mindlin and Walton contact theories, assuming different weight fractions of smooth and rough contact behaviours, to predict the elastic properties of the high porosity point. Using either the Hertz‐Mindlin or Walton theories with rough contact behaviour to define the high porosity endpoint gives an over‐prediction of the velocities. The P‐velocity is overpredicted by a factor of ~1.5 and the S‐velocity by a factor of ~1.8 for highly porous gas‐sand. The degree of misprediction decreases with increasing water saturation and porosity.Using the Hertz‐Mindlin theory with smooth contact behaviour or weighted Walton models gives a better fit to the data, although the data are best described using the Walton smooth model. To predict the properties at the lower porosities, the choice of bounding model attached to the Walton Smooth model controls the degree of fit to the data, where the Reuss bound best captures the porosity variations of dry and wet sands in this case since they are caused by depositional differences. The empirical models based on lab experiments on unconsolidated sand also fit the velocity data measured by sonic logs in situ, which gives improved confidence in using lab‐derived results.  相似文献   
239.
Complete daily water budget information was assembled for a 105 km segment of the South Platte River in the plains region below Denver, CO, for the period 1983–1993. The data were used in testing the possibility that dependence of alluvial exchange mechanisms on stage height, as shown by models of alluvial exchange, allows alluvial exchange to be predicted continuously over a given reach through use of statistical information on river discharge. The study segment was divided into an upper and a lower reach; daily alluvial exchanges for each reach were estimated by the method of residuals. The two reaches show small (15%) but statistically significant annual differences in rates of exchange. For each reach, there is a seasonal pattern (2·5‐fold oscillation) in alluvial discharge to the channel, reflecting seasonality in recharge of the alluvium by irrigation. At discharges up to 40 m3/s (82nd percentile), alluvial discharge to the channel occurs at a rate independent of river discharge. Above 40 m3/s, net alluvial discharge into the channel is progressively reduced; at 60 m3/s (92nd percentile) there is no net alluvial exchange. At still higher river discharges, water is lost to the alluvium through bank storage at a rate that is linearly related to the logarithm of discharge. Annually, alluvial discharge accounts for 15–18% of water entering the study segment, and alluvial recharge through bank storage accounts for 2–4% of water leaving the segment. Alluvial recharge through bank storage at the highest discharges can, however, exceed low‐flow alluvial discharge rates by five‐fold over short intervals. Even though daily alluvial exchanges vary widely, they can be estimated at r2 values above 80% on the basis of reach, season, and river discharge. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
240.
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists.The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号