首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  国内免费   1篇
地球物理   19篇
地质学   32篇
天文学   1篇
综合类   1篇
自然地理   11篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   8篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
51.
The sulfur contents and sulfur isotope ratios (δ34S) have been measured for samples collected from the Isua area of West Greenland in an effort to place narrower limits on the time of the rise of sulfate respirers during the Precambrian.The δ34S values of the Isua sediments (3.7 × 109 yr old) including the various facies of the banded iron-formations have their mean values close to zero %. (CDT) (±0.5%.) with a standard deviation of less than 1%.. This comes extremely close to the respective means yielded by the presumed tuffaceous amphibolites (+ 0.3 ± 0.9%.) and by the somewhat younger, between 3.1 and 3.7 ± 109 yr, basaltic Ameralik dykes of the region (+ 0.6 ± 1.1%.).In view of the regional distribution of the Isua banded iron-formation sediments, the variety of environmental conditions under which the various facies were deposited and the complete absence of isotopic evidence for sulfate reducers, in contrast to the banded iron-formations of the middle Archaean (δ34Svariesfrom ?20 to +20%.), it seems most unlikely that evidence for 'sulfate reducers' existed or will be found in other sediments of Isua age.The very small spread in δ34S values for the Isua sediments is interpreted as due to minor fractionation during the passage of endogenic sulfur phases to their present sites of emplacement within the sedimentary succession.  相似文献   
52.
对北京城东附近某苗圃内典型的土壤污染剖面进行了环境磁学和地球化学分析,发现某些重金属(Pb、Zn、Sr、Ba、Cu)和磁性参数呈现相同的垂向变化趋势,都在37cm以上显示高值区,磁化率均值达到192.02×10-8m3/kg,如Pb含量达到67.62mg/kg,而在37cm以下,明显属低值区,磁化率均值只有18.38×10-8m3/kg,Pb含量也只有23.43mg/kg.借助于指标聚类分析和主成分分析方法,揭示出各种指标之间的内在联系,表明磁参数与Pb、Zn、Sr、Ba、Cu等元素显著相关,彼此的相关系数都达到0.90以上,属于同一类别的隶属度在80%以上,说明磁指标可以作为这些重金属污染的一种代用指标.利用模糊C均值聚类分析分辨出了土壤上部污染物堆积层和下部未污染土壤背景2种不同的特征段.  相似文献   
53.
Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to the formation of either dissolved Fe(II), i.e. Fe2+, in HEPES buffered medium or Fe(II) carbonate (siderite) in bicarbonate buffered medium. Besides the different identity of the Fe(II) compound formed at the end of Fe(III) reduction, there was no difference in the maximum rate and extent of microbial iron reduction and magnetite formation during FH reduction in the two buffer systems used. Our findings indicate that microbial magnetite formation during iron reduction depends on the geochemical conditions and can be of minor importance at low FH concentrations or be inhibited by adsorption of HS to the FH surface. Such scenarios could occur in soils with low iron mineral or high organic matter content.  相似文献   
54.
Measuring magnetic susceptibility is a method which is used to estimate the amount of magnetic particles in soils, sediments or dusts. Changes in magnetic susceptibility can be due to various reasons: input from different sources of sediments, e.g. from different soils or rocks, atmospheric fallout of anthropogenic dusts containing magnetic particles produced by fossil fuel combustion, steel production or road traffic. In the case of river sediments, input from the catchment is of primary significance. The main aim of this investigation was to test the potential of magnetic susceptibility screening in identifying the effect and significance of anthropogenic activities in an area with complex geological conditions. We investigated the magnetic susceptibility of riverbed sediments of the largest river of the Czech Republic, the Moldau river. Besides that, the magnetic signal of nearby topsoils as well as of outcropping bedrocks in the vicinity of the river was examined. In the upper 300 km of the river, the magnetic enhancement of the river sediments can be linked to anthropogenic activities. Positive correlations were found in the river sediments between the contents of Cu and Zn and magnetic susceptibility, while Fe, Mn and Ni did not show a correlation with magnetic susceptibility. However, the major geogenic magnetic anomaly in the area around the Slapy dam has made it impossible to unambiguously interpret the magnetic signal in terms of anthropogenic impact in the last 80 km downstream.  相似文献   
55.
The solid planets assembled 4.57 Gyr ago during a period of less than 100 Myr, but the bulk of the impact craters we see on the inner planets formed much later, in a narrow time interval between 3.8 and 3.9 Gyr ago, during the so-called late heavy bombardment (LHB). It is not certain what caused the LHB, and it has not been well known whether the impactors were comets or asteroids, but our present study lend support to the idea that it was comets. Due to the Earth’s higher gravity, the impactors will have hit the Earth with ∼twice the energy density that they hit the Moon, and the bombardment will have continued on Earth longer than on the Moon. All solid surface of the Earth will have been completely covered with craters by the end of the LHB.However, almost nothing of the Earth’s crust from even the end of this epoch, is preserved today. One of the very few remnants, though, is exposed as the Isua greenstone belt (IGB) and nearby areas in Western Greenland. During a field expedition to Isua, we sampled three types of metasedimentary rocks, deposited ∼3.8 billion years ago, that contain information about the sedimentary river load from larger areas of surrounding land surfaces (mica-schist and turbidites) and of the contemporaneous seawater (BIF). Our samples show evidence of the LHB impacts that took place on Earth, by an average of a seven times enrichment (150 ppt) in iridium compared to present-day ocean crust (20 ppt). The clastic sediments show slightly higher enrichment than the chemical sediments, which may be due to contamination from admixtures of mafic (proto-crustal) sources.We show that this enrichment is in agreement with the lunar cratering rate and a corresponding extraterrestrial LHB contribution to the Earth’s Hadean-Eoarchean crust, provided the bulk of the influx was cometary (i.e., of high velocity and low in CI abundance), but not if the impactors were meteorites (i.e. had velocities and abundances similar to present-day Earth-crossing asteroids). Our study is a first direct indication of the nature of the LHB impactors, and the first to find an agreement between the LHB lunar cratering rate and the Earth’s early geochemical record (and the corresponding lunar record). The LHB comets that delivered the iridium we see at Isua will at the same time have delivered the equivalent of a ∼1 km deep ocean, and we explain why one should expect a cometary ocean to become roughly the size of the Earth’s present-day ocean, not only in terms of depth but also in terms of the surface area it covers. The total impacting mass on the Earth during the LHB will have been ∼1000 tons/m2.  相似文献   
56.
In the pre-3.7 Ga old Isua supracrustal belt, West Greenland, a banded iron-formation occurs. The iron-formation can be subdivided into different facies according to composition and mineralogy, and these facies resemble the facies subdivision of younger Archaean and Precambrian iron-formations. The geochemistry of the Isua iron-formation indicates that the secular variation in the contents of phosphorus, calcium and aluminium as well as the Na/K ratios of Precambrian iron-formations can be extended into the Early Archaean. A remarkable feature of the Isua iron-formation is the high chalcopyrite/iron-sulphide ratio. Field relationships and geochemical evidence indicate that the iron-formation is mainly of submarine-exhalative origin from brines of basaltic pedigree.  相似文献   
57.
A magnetic study was carried out on lacustrine sediments from the Zoigê basin, Tibetan Plateau, in order to obtain a better understanding of palaeoclimatic changes there. Gyromagnetic remanence (GRM) acquisition is unexpectedly observed during static three-axis alternating field (AF) demagnetization in about 20 per cent of a large number of samples. X-ray diffraction (XRD) analysis on a magnetic extract clearly shows that greigite is the dominant magnetic mineral carrier. Scanning electron microscopy (SEM) reveals that the greigite particles are in the grain size range of 200–300  nm, possibly in the single-domain state. Greigite clumps of about 3  μm size are sealed by silicates. Fitting of XRD peaks yields a crystalline coherence length of about 15  nm, indicating that the particles seen in the SEM are polycrystalline.
  GRM intensities of most samples are of the same order as the NRM, while others show much stronger GRM although their magnetic properties are similar. Variation of the demagnetization sequence confirms that GRM is mainly produced perpendicular to the AF direction. The anisotropy direction can be derived from GRM, but more systematic studies are needed for detailed conclusions. An attempt to correct for GRM failed due to high GRM intensities and because smaller GRM acquisition was also found along the demagnetization axis. Behaviours of acquisition and AF demagnetization of GRM are comparable with those of NRM, ARM, IRM, indicating fine grain sizes of remanence carriers.  相似文献   
58.
59.
60.
This investigation was carried out within the scope of EU-FP5 project MAGPROX. In parallel with the work of Kalinski et al. (2004, submitted), in which the magnetic signatures of the same soil profiles were analysed in more detail. The ‘hot spot’ under investigation was situated in the Lausitz area, Eastern Germany, between two major power plants, Schwarze Pumpe and Boxberg. This heavily industrialized region is known as the Black Triangle, named after the large lignite deposits and the old-technology power plants, among other petrochemical plants, refineries, textile manufacturing and glasswork industries. The relationship between magnetic parameters and heavy metal concentrations (Fe, Mn, Zn, Pb, Cu, Cr, Cd, Co and Ni) in soil profiles was determined statistically using linear regression analysis. Strong positive correlation was observed between heavy metal concentrations as viewed preliminarily from the heavy metal and magnetic susceptibility distributions with depth (soil profiles), and from the correlation coefficients obtained.MAGPROX team–FP5 RTD Project No. EVK2-CT-1999-00019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号