首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24438篇
  免费   173篇
  国内免费   918篇
测绘学   1410篇
大气科学   1984篇
地球物理   4511篇
地质学   11599篇
海洋学   1008篇
天文学   1634篇
综合类   2161篇
自然地理   1222篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4762篇
  2017年   4038篇
  2016年   2578篇
  2015年   235篇
  2014年   82篇
  2013年   27篇
  2012年   991篇
  2011年   2729篇
  2010年   2017篇
  2009年   2313篇
  2008年   1890篇
  2007年   2364篇
  2006年   54篇
  2005年   194篇
  2004年   406篇
  2003年   410篇
  2002年   249篇
  2001年   50篇
  2000年   51篇
  1999年   14篇
  1998年   21篇
  1994年   1篇
  1981年   21篇
  1980年   19篇
  1978年   1篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
211.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   
212.
Izmir Bay is one of the most polluted estuaries in the whole Mediterranean Sea. The inner part of the Bay (Inner Bay) is heavily affected by domestic and industrial discharge. As a result of these loads, strong eutrophication occurs in the Inner Bay, which is temporally anaerobic. The ecologically sensitive approach of the local authorities during the last decade has given rise to a wide variety of monitoring and research studies on this bay. On the other hand, the municipality of Izmir started to operate wastewater treatment facilities since January 2000. The Institute of Marine Sciences and Technology — Izmir (IMST) with its research vessel R/V K Piri Reis has been conducting an intensive monitoring program since 1988 and especially during the recent few years. These investigations provide an opportunity for the evaluation of the performance of the wastewater treatment plant in terms of the change in the optical properties of Izmir Bay water in a positive manner. The turbidity values measured in these monitoring studies indicate that the values have changed drastically after January 2000. Their spatial variation indicates that the values decrease from the Inner Bay towards the Aegean Sea. The turbidity (light transmission) values are measured with an automatic CTD (conductivity, temperature and depth) system during each cruise. The seiche disc depth measurement is carried out only occasionally. The accuracy of the seiche disc depth is dependent on certain daylight conditions and depends on the operator. The seiche disc depth (D s) is an important parameter to estimate primary production of organic matter (hereafter called production). A relation between light transmission (turbidity) value and seiche disc depth (D s) is found with very good agreement. The correlations are very high (approximately 0.94) with slight seasonal variation.  相似文献   
213.
Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 \(\hbox {km}^{2}\)), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results’ testing (validating area) and (ii) plotting the ROC (receiver operating characteristics) curve.  相似文献   
214.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
215.
The swath bathymetric data acquired during the “Sumatra Aftershocks” cruise from the Sunda trench in the Indian Ocean to the north of the Sumatra Island imaged several scars and deposits. In situ pore pressure measurements using the Ifremer piezometer and coring demonstrate that high excess pore pressure and sediment deformation was generated by a recent event in the scar of the slope failure zone identified by J.T. Henstock and co-authors. This excess pore pressure is localized in the upper sedimentary layers and is not related to an interplate subduction process. Numerical simulations of the hydrological system that take into account the hydro-mechanical properties of the upper sediment layer show that the excess pore pressure and sediment deformations could be generated at the time of the December 26, 2004 Great Sumatra Earthquake. The Sumatra Aftershocks team: J.-C. Sibuet, S. Singh, R. Apprioual, N.C. Aryanto, J. Begot, A. Cattaneo, A.P.S. Chauchan, R. Creach, J. Crozon, A. Domzig, N. Falleau, D. Graindorge, F. Harmegnies, Y. Haryadi, F. Klingelhoffer, S.K. Kolluru, J.-Y. Landuré, C. Le Lann, J. Malod, A. Normand, G. Oggian, C. Rangin, D. Restunin Galih, J.-L. Schneider, N. Sultan, M. Taufik, M. Umber and H. Yamaguchi.  相似文献   
216.
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141?±?0.004 and 0.143?±?0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270?±?0.008 and 0.274?±?0.006‰ more positive than in vapors, respectively. The general \(\alpha - T\) equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\) and \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\), respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.  相似文献   
217.
Seasonal extreme wave statistics were reproduced by using the 25-km-grid global wave model of WAVEWATCH-III. The results showed that the simulated wave dataset for the present climate (1979-2009) was similar to Climate Forecast System Reanalysis (CFSR) wave data. Statistics such as the root mean squared error (RMSE) and correlation coefficient (CC) over the western North Pacific (WNP) basin were 0.5 m and 0.69 over the analysis domain. The largest trends and standard deviation were around the southern coast of Japan and western edge of the WNP. Linear regression analysis was employed to identify the relationship between the leading principal components (PCs) of significant wave heights (SWHs) in the peak season of July to September and sea surface temperature (SST) anomalies in the equatorial Pacific. The results indicated that the inter-annual variability of SWH can be associated with the El Niño-Southern Oscillation in the peak season. The CC between the first PC of the SWH and anomalies in the Nino 3.4 SST index was also significant at a 99% confidence level. Significant variations in the SWH are affected by tropical cyclones (TCs) caused by increased SST anomalies. The genesis and development of simulated TCs can be important to the variation in SWHs for the WNP in the peak season. Therefore, we can project the variability of SWHs through TC activity based on changes in SST conditions for the equatorial Pacific in the future.  相似文献   
218.
The advanced weather research and forecasting model is used to investigate the influence of planetary boundary layer (PBL) processes on intensity and structure of the storm Phailin (2013). Five simulations are conducted with five PBL schemes; Yonsei University (YSU), Mellor?Yamada?Nakanishi?Niino order2.5 (MYNN2), Assymetric Convective Model2 (ACM2), Medium Range Forecast (MRF), and Bougeault and Lacarrere (BouLac). The simulation duration includes the pre???intensification and rapid intensification phase of Phailin before landfall. Results indicate that during the pre???intensification phase, storm’s track and intensity are not much sensitivity to PBL but structural changes are noted. A significant sensitivity of track and intensity to PBL parameterizations are found during rapid intensification phase. BouLac and MRF produced two extremes with 39 hPa intense and 16 km compact storm for BouLac than MRF. Further analysis reveals an outward movement of air parcel just above the boundary layer which causes spin-down for YSU and MYNN2. BouLac is associated with stronger eddy diffusivity and moisture fluxes within the boundary layer and stronger cyclonic vorticity just above the boundary layer than other experiments. Stronger cyclonic vorticity above the boundary layer in BouLac favors intense updraft, facilitating more moisture transport from the boundary layer to upper layers aiding stronger secondary circulation and robustly intensifying the storm. A relatively deeper and drier inflow layer associated with weaker cyclonic vorticity just above the boundary layer reduces the moisture transport and weaken the secondary circulation for MRF than others.  相似文献   
219.
Ariake Bay, Kyushu Island, has recently exhibited environmental degradation in the form of red tides and anoxic bottom water. To determine the characteristics and regional classification of the copepod community, zooplankton surveys were made throughout the bay in three cruises each in October 2004, January 2005 and March 2009 by vertical tows of a 0.1-mm-mesh plankton net. Oithona davisae was the most abundant in January and March, and Microsetella norvegica in October. Cluster analysis revealed that the copepod community from each cruise was generally separated into the inner to eastern-middle region and the western-middle to mouth region. A SIMPER analysis revealed that dissimilarity between the groups and similarity within each group were mainly due to the dominant species, but the similarities within the outer-region group in January and March were mostly contributed by Paracalanus parvus s.l. A non-metric multidimensional scaling with bubble plots of environmental variables and a BIOENV analysis showed that transparency was more different between the two groups than temperature and salinity. As compared with two similarly sized, eutrophic bays (Tokyo and Osaka Bays), Ariake Bay differs from Tokyo Bay in the dominance of M. norvegica and from Osaka Bay in the high abundance of O. davisae even in the colder season. The dominant species and the regional classification of the copepod community in the bay were similar to those in the studies in the 1970s, suggesting that the copepod community has not notably changed during the last 3 decades.  相似文献   
220.
The subaerial tidal sand area in the northern Jiangsu Province (Subei), stretching from Dongtai towards east with a fan shape, is an early developing stage of radial sand ridges distributed in the South Yellow Sea. Since 5000–6000 a BP, after the Holocene transgression maximum in the northern Jiangsu Province, subaqueous tidal sand bodies were exposed and changed into land gradually. The environmental magnetism analysis shows that subaerial tidal sand strata are formed by the convergent-divergent paleo-tidal current field. The sediment source of tidal sand strata came early from the Changjiang River and late from the Yellow River. Sea floor erosion by tidal currents also served as an important sand source. Drilling cores and ground-penetrating profile show that there exists no probability of sand supplying directly by a large river through the apical area of tidal sand ridges either on land or in the sea. Fluvial deposits supplied the tidal sand bodies by alongshore transportation, which corresponds to the conclusions obtained by the analyses of provenance and paleocurrent field. Project supported by the National Natural Science Foundation of China (Grant Nos. 43236120 and 49676288).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号