首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25409篇
  免费   435篇
  国内免费   314篇
测绘学   721篇
大气科学   1802篇
地球物理   4873篇
地质学   8785篇
海洋学   2295篇
天文学   6302篇
综合类   52篇
自然地理   1328篇
  2021年   202篇
  2020年   238篇
  2019年   301篇
  2018年   606篇
  2017年   588篇
  2016年   728篇
  2015年   409篇
  2014年   700篇
  2013年   1314篇
  2012年   799篇
  2011年   1046篇
  2010年   961篇
  2009年   1265篇
  2008年   1133篇
  2007年   1155篇
  2006年   1130篇
  2005年   841篇
  2004年   840篇
  2003年   761篇
  2002年   718篇
  2001年   615篇
  2000年   638篇
  1999年   564篇
  1998年   554篇
  1997年   523篇
  1996年   395篇
  1995年   396篇
  1994年   409篇
  1993年   313篇
  1992年   309篇
  1991年   258篇
  1990年   315篇
  1989年   271篇
  1988年   255篇
  1987年   279篇
  1986年   237篇
  1985年   321篇
  1984年   338篇
  1983年   329篇
  1982年   313篇
  1981年   250篇
  1980年   268篇
  1979年   217篇
  1978年   206篇
  1977年   215篇
  1976年   180篇
  1975年   190篇
  1974年   177篇
  1973年   167篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
511.
To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters 0=0.482±0.005 mm/s (relative to -Fe) and M=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.  相似文献   
512.
The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone 19km from the summit (episodes 4–47). These spectacular events gave way in July 1986 to five and a half years of nearcontinuous, low-level effusion from the Kupaianaha vent, 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. this three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition.  相似文献   
513.
A small air shower array operating over many years has been used to search for ultra-high energy (UHE) gamma radiation ( 50 TeV) associated with gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each burst are presented for seven GRBs located with zenith angles < 20°. A 4.3 excess over background was observed between 10 and 20 minutes following the onset of a GRB on 11 May 1991. The confidence level that this is due to a real effect and not a background fluctuation is 99.8%. If this effect is real then cosmological models are excluded for this burst because of absorption of UHE gamma rays by the intergalactic radiation fields.  相似文献   
514.
A search for low energy neutrinos of all flavours in correlation with 553 ray bursts detected by BATSE aboard the Compton Observatory has been performed by the LSD (Liquid Scintillator Detector) neutrino telescope. No excess ofe,, orv e,, candidate has been detected by LSD during the time interval in which BATSE detected the 90% of the photon flux for any of the GRBs analyzed. Upper limits on the neutrino fluxes are given in the paper.  相似文献   
515.
We investigate the global evolution of a turbulent protoplanetary disk incorporating the effects of Maxwell stress due to a large-scale magnetic field permeating the disk. A magnetic field is produced continuously by an dynamo and the resultant Maxwell stress assists the viscous stress in p roviding the means for disk evolution. The most striking feature of magnetized disk evolution is the presence of the surface density bulge located in the magnetic gap, the region of the disk where the degree of ionization is too low to allow for coupli ng between the magnetic field and the gas. The bulge persists for a time of the order of 105–106 yr. The presence and persistence of the surface density bulge may have important implications for the process of planet formation and the overall characteristics of resultant planetary systems.Operated by USRA under contract No. NASW-4574 with NASA.  相似文献   
516.
Processes resulting in the formation of hydrocarbons of carbonaceous chondrites and the identity of the interstellar molecular precursors involved are an objective of investigations into the origin of the solar system and perhaps even life on earth. We have combined the resources and experience of an astronomer and physicists doing laboratory simulations with those of a chemical expert in the analysis of meteoritic hydrocarbons, in a project that investigated the conversion of polycyclic aromatic hydrocarbons (PAHs) formed in stellar atmospheres into alkanes found in meteorites. Plasma hydrogenation has been found in the University of Alabama at Birmingham Astrophysics Laboratory to produce from the precursor PAH naphthalene, a new material having an IR absorption spectrum (Lee, W. and Wdowiak, T.J., Astrophys. J. 417, L49-L51, 1993) remarkably similar to that obtained at Arizona State University of the benzene-methanol extract of the Murchison meteorite (Cronin, J.R. and Pizzarello, S., Geochim. Cosmochim. Acta 54, 2859-2868, 1990). There are astrophysical and meteoritic arguments for PAH species from extra-solar sources being incorporated into the solar nebula, where plasma hydrogenation is highly plausible. Conversion of PAHs into alkanes could also have occurred in the interstellar medium. The synthesis of laboratory analogs of meteoritic hydrocarbons through plasma hydrogenation of PAH species is underway, as is chemical analysis of those analogs. The objective is to clarify this heretofore uninvestigated process and to understand its role during the origin of the solar system as a mechanism of production of hydrocarbon species now found in meteorites. Results have been obtained in the form of time-of-flight spectroscopy and chemical analysis of the lab analog prepared from naphthalene.  相似文献   
517.
Models for the motions of flare loops and ribbons   总被引:1,自引:0,他引:1  
We have found a conformal mapping which is valid for any magnetic boundary condition at the photosphere and which can be used to determine the evolution of an open, two-dimensional magnetic field configuration as it relaxes to a closed one. Solutions obtained with this mapping are in quasi-static equilibrium, and they contain a vertical current sheet and have line-tied boundary conditions. As a specific example, we determine the solution for a boundary condition corresponding to a submerged, two-dimensional dipole below the photosphere. We assume that the outer edges of the hottest X-ray loops correspond to field lines mapping from the outer edges of the H ribbon to the lower tip of the current sheet where field lines reconnect at aY-type neutral line which rises with time. The cooler H loops are assumed to lie along the field lines mapping to the inner edges of the flare ribbons. With this correspondence between the plasma structures and the magnetic field we determine the shrinkage that field lines are observed to undergo as they are disconnected from the neutral line. During the early phase of the flare, we predict that shrinkage inferred from the height of the H and X-ray loops is close to 100% of the loop height. However, the shrinkage should rapidly decrease with time to values on the order of 20% by the late phase. We also predict that the shrinkage in very large loops obeys a universal scaling law which is independent of the boundary condition, provided that the field becomes self-similar (i.e., all field lines have the same shape) at large distances. Specifically, for any self-similar field containing aY-type neutral line, the observed shrinkage at large distances should decrease as (X/X R)–2/3, where X is the ribbon width andX Ris the ribbon separation. Finally, we discuss the relation between the electric field at the neutral line and the motions of the flare loops and ribbons.  相似文献   
518.
A solar type I noise storm was observed on 30 July, 1992 with the radio spectrometer Phoenix of ETH Zürich, the Very Large Array (VLA) and the soft X-ray (SXR) telescope on board theYohkoh satellite. The spectrogram was used to identify the type I noise storm. In the VLA images at 333 MHz a fully left circular polarized (100% LCP) continuum source and several highly polarized (70% to 100% LCP) burst sources have been located. The continuum and the bursts are spatially separated by about 100 and apparently lie on different loops as outlined by the SXR. Continuum and bursts are separated in the perpendicular direction to the magnetic field configuration. Between the periods of strong burst activities, burst-like emissions are also superimposed on the continuum source. There is no obvious correlation between the flux density of the continuum and the bursts. The burst sources have no systematic motion, whereas the the continuum source shows a small drift of 0.2 min–1 along the X-ray loop in the long-time evolution. The VLA maps at higher frequency (1446 MHz) show no source corresponding to the type I event. The soft X-ray emission measure and temperature were calculated. The type I continuum source is located (in projection) in a region with enhanced SXR emission, a loop having a mean density of n e = (1.5 ± 0.4) × 109 cm–3 and a temperature ofT = (2.1 ± 0.1) × 106 K. The centroid positions of the left and right circularly polarized components of the burst sources are separated by 15–50 and seem to be on different loops. These observations contradict the predictions of existing type I theories.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   
519.
According to A.A. Khentov Venus' rotation is in the quasi-stationary state as a result of the balance interaction of the solar tidal torque with the aerodynamical torque of the rotating Venus' atmosphere. In case of the nonconservative forces are negligible and the solar attraction is the stabilizing factor, the rotation of the rigid Venus may be assumed as the first approximation. The theory of the rotation of the rigid Venus in the coordinates,, had been constructed. It have been found that Venus rotates almost uniformly and the libration harmonics are negligible.  相似文献   
520.
Summary Cosmic dust grains play an important role for the thermal, dynamical, and chemical structure of the interstellar medium. This is especially true for the star formation process and the late stages of stellar evolution. Dust grains determine the spectral appearance of protostars, very young stellar objects with disk-like structures as well as of evolved stars with circumstellar envelopes.In this review, we will demonstrate that solid particles in interstellar space are both agent and subject of galactic evolution. We will especially discuss the different dust populations in circumstellar envelopes, the diffuse interstellar medium, and the molecular clouds with strong emphasis on the evolutionary aspects and the metamorphosis of these populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号