首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   12篇
  国内免费   21篇
测绘学   11篇
大气科学   20篇
地球物理   109篇
地质学   232篇
海洋学   37篇
天文学   70篇
综合类   3篇
自然地理   28篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   16篇
  2017年   12篇
  2016年   20篇
  2015年   11篇
  2014年   19篇
  2013年   24篇
  2012年   28篇
  2011年   23篇
  2010年   27篇
  2009年   30篇
  2008年   31篇
  2007年   27篇
  2006年   15篇
  2005年   10篇
  2004年   15篇
  2003年   15篇
  2002年   21篇
  2001年   12篇
  2000年   10篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   11篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1982年   8篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1974年   3篇
  1972年   4篇
  1970年   2篇
  1965年   3篇
  1957年   1篇
排序方式: 共有510条查询结果,搜索用时 14 毫秒
21.
The Uintjiesberg kimberlite diatreme occurs within the Proterozoic Namaqua–Natal Belt, South Africa, approximately 60 km to the southwest of the Kaapvaal craton boundary. It is a group I, calcite kimberlite that has an emplacement age of 100 Ma. Major and trace element data, in combination with petrography, are used to evaluate its petrogenesis and the nature of its source region. Macrocryst phases are predominantly olivine with lesser phlogopite, with very rare garnet and Cr-rich clinopyroxene. Geochemical variation amongst the macrocrystic samples (Mg# 0.85–0.87, SiO2=27.0–29.3%, MgO=26.1–30.5%, CaO=10.9–13.5%) is shown to result from 10% to 40% entrainment and partial assimilation of peridotite xenoliths, whereas that shown by the aphanitic samples (Mg# 0.80–0.83, SiO2=19.1–23.0%, MgO=17.9–23.9%, CaO=16.5–23.7%) is consistent with 7–25% crystal fractionation of olivine and minor phlogopite. Changing trajectories on chemical variation diagrams allow postulation of a primary magma composition with 25% SiO2, 26% MgO, 2.3% Al2O3, 5%H2O, 8.6% CO2 and Mg#=0.85.

Forward melting models, assuming 0.5% melting, indicate derivation of the primary Uintjiesberg kimberlite magma from a source enriched in light rare earth elements (LREE) by 10× chondrite and heavy REE (HREE) by 0.8–2× chondrite, the latter being dependent on the proportion of residual garnet. Significant negative Rb, K, Sr, Hf and Ti anomalies present in the inferred primary magma composition are superimposed on otherwise generally smooth primitive mantle-normalized trace element patterns, and are inferred to be a characteristic of the primary magma composition. The further requirement for a source with chondritic or lower HREE abundances, residual olivine with high Fo content (Fo94) suggests derivation from a mantle previously depleted in mafic melt but subsequently enriched in highly incompatible elements prior to kimberlite genesis. These requirements are interpreted in the context of melting of continental lithospheric mantle previously enriched by metasomatic fluids derived from a sublithospheric (plume?) source.  相似文献   

22.
The recent numerical simulations of Tittemore and Wisdom (1988, 1989, 1990) and Dermottet al. (1988), Malhotra and Dermott (1990) concerning the tidal evolution through resonances of some pairs of Uranian satellites have revealed interesting dynamical phenomena related to the interactions between close-by resonances. These interactions produce chaotic layers and strong secondary resonances. The slow evolution of the satellite orbits in this dynamical landscape is responsible for temporary capture into resonance, enhancement of eccentricity or inclination and subsequent escape from resonance. The present contribution aims at developing analytical tools for predicting the location and size of chaotic layers and secondary resonances. The problem of the 3:1 inclination resonance between Miranda and Umbriel is analysed.  相似文献   
23.
The measurements of pulsar frequency second derivatives have shown that they are 102−106 times larger than expected for standard pulsar spin-down law, and are even negative for about half of pulsars. We explain these paradoxical results on the basis of the statistical analysis of the rotational parameters ν, and of the subset of 295 pulsars taken mostly from the ATNF database. We have found a strong correlation between and for both and , as well as between ν and . We interpret these dependencies as evolutionary ones due to being nearly proportional to the pulsars’ age. The derived statistical relations as well as “anomalous” values of are well described by assuming the long-time variations of the spin-down rate. The pulsar frequency evolution, therefore, consists of secular change of ν ev(t), and according to the power law with n≈5, the irregularities, observed within a timespan as a timing noise, and the variations on the timescale larger than that—several decades. This work has been supported by the Russian Foundation for Basic Research (grant No 04-02-17555), Russian Academy of Sciences (program “Evolution of Stars and Galaxies”), and by the Russian Science Support Foundation. The authors would also like to thank the anonymous referee for valuable comments.  相似文献   
24.
Possible detection of signatures of structure formation at the end of the 'dark age' epoch  ( z ∼ 40–20)  is examined. We discuss the spectral–spatial fluctuations in the cosmic microwave background radiation (CMBR) temperature produced by elastic resonant scattering of CMBR photons on deuterated hydrogen (HD) molecules located in protostructures moving with peculiar velocity. Detailed chemical kinematic evolution of HD molecules in the expanding homogeneous medium is calculated. Then, the HD abundances are linked to protostructures at their maximum expansion, whose properties are estimated by using the top-hat spherical approach and the Λ cold dark matter (ΛCDM) cosmology. We find that the optical depths in the HD three lowest pure rotational lines for high-peak protohaloes at their maximum expansion are much higher than those in LiH molecule. The corresponding spectral–spatial fluctuation amplitudes, however, are probably too weak to be detected by current and forthcoming millimetre telescope facilities. We extend our estimates of spectral–spatial fluctuations to gas clouds inside collapsed CDM haloes by using results from a crude model of HD production in these clouds. The fluctuations for the highest peak CDM haloes at redshifts ∼20–30 could be detected in the future. Observations will be important to test model predictions of early structure formation in the Universe.  相似文献   
25.
Abstract— LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low‐Ti (3.21–3.43% TiO2) low‐Al (9.93–10.45% Al2O3), and low‐K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late‐stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar‐wind‐implanted gases. The stones have a comparable major element composition and petrography to low‐Ti, low‐Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt.  相似文献   
26.
Abstract– The grains returned by NASA’s Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ~6.1 km s?1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two‐stage light‐gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact‐generated components are observed in all samples. Al incorporation into melt‐derived phases allows differentiation between melt and shock‐induced phases. In single grain impactor residues, impact‐generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact‐generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.  相似文献   
27.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   
28.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   
29.
Initiated by the need to quantify erosion rates and the impacts of global changes on erosion, several attempts have been made to apply erosion models at regional scales. However, these models have often been directed towards on-site soil erosion estimates, emphasising sheet and rill erosion processes, and disregarding gully erosion, channel erosion and sediment transport. These models are therefore of limited use for the assessment of sediment yield, off-site impacts of erosion, and for the development of environmental management to control these impacts at regional scale. This study analyses and compares three spatially distributed models for the prediction of soil erosion and/or sediment yield at regional scales: the WATEM-SEDEM model that is based on the empirical Revised Universal Soil Loss Equation (RUSLE) in combination with a sediment transport equation, the physics-based Pan European Soil Erosion Risk Assessment model (PESERA), and a newly developed Spatially Distributed Scoring model (SPADS). The three models were applied to 61 Spanish drainage basins and model predictions were evaluated against data on measured reservoir sedimentation rates. Global data sets on land use, climate, elevation and soil characteristics were used as model input for WATEM-SEDEM and SPADS, whereas published soil erosion estimates of PESERA at 1 km2 resolution were used directly. SPADS and WATEM-SEDEM provided best results after separate calibration for basins with a Sediment Delivery Ratio (SDR) higher than 5% and those with an SDR lower than 5%. In this way, SPADS explained 67% of variation in sediment yield, while WATEM-SEDEM explained 48% of the variation. PESERA represents a promising alternative to the use of empirical models at the regional scale as it can be applied to very diverse environments with little calibration. However, PESERA provides soil erosion rates and not sediment yield estimates. For most basins PESERA soil erosion rates vary between fifty and close to zero percent of total sediment yield. Two major factors may explain this discrepancy between modelled soil erosion rates and measured sediment yield. First, it may be that PESERA underestimates soil erosion under Mediterranean conditions, although PESERA soil erosion rates are of the same order of magnitude as erosion rates measured in erosion plot studies. Second, gully-, river channel erosion and sediment transport processes may be much more important than sheet- and rill erosion for regional scale sediment yield in these environments. These issues therefore require further attention in future model development. Although spatially lumped models provide better predictions of sediment yield at the basin scale, and while validation of the predicted spatial patterns of sources and sinks of sediment requires further research, spatially distributed models are expected to be of value to support management decisions regarding the assessment of on-site and off-site impacts of erosion at the regional scale.  相似文献   
30.
Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in Hubble Space Telescope ( HST ) images. Radiation damage also creates unrelated warm pixels – but these happen to be perfect for measuring CTI. We model CTI in the Advanced Camera for Surveys (ACS)/Wide Field Channel and construct a physically motivated correction scheme. This operates on raw data, rather than secondary science products, by returning individual electrons to pixels from which they were unintentionally dragged during readout. We apply our correction to images from the HST Cosmic Evolution Survey (COSMOS), successfully reducing the CTI trails by a factor of ∼30 everywhere in the CCD and at all flux levels. We quantify changes in galaxy photometry, astrometry and shape. The remarkable 97 per cent level of correction is more than sufficient to enable a (forthcoming) reanalysis of downstream science products and the collection of larger surveys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号