首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
测绘学   2篇
大气科学   2篇
地球物理   17篇
地质学   62篇
海洋学   7篇
天文学   3篇
自然地理   9篇
  2018年   2篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   1篇
  2010年   1篇
  2009年   14篇
  2008年   5篇
  2007年   11篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
51.
Pointe-à-Pitre, the main city of Guadeloupe in the French West Indies, has on several occasions been partially destroyed by major historical earthquakes. Moreover, a post-seismic assessment of the damage from the 1985 Montserrat earthquake indicates that the town is prone to site effects. Consequently, from 1996 to 1998, BRGM conducted a seismic microzonation study based on geotechnical and geological data. At the same time, three seismological studies were being conducted – two based on earthquake recordings using a time-series analysis and the classical spectral ratio (CSR) method (CETE/LCPC and BRGM), and the third based on noise measurement at 400 points using the horizontal-to-vertical noise ratio (HVNR) method (CETE/LCPC). The objective of this paper is not to carry out a new microzonation study by taking into account all the results, but rather to show in what respects the results of these different methods are in agreement or not. A comparison of the results of the seismological studies with the geotechnical microzonation shows that they are in fairly good agreement, albeit with some discrepancies. The results indicate that the seismological methods and the geotechnical data are highly complementary and should be used together in compiling seismic transfer-function microzonation maps. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
52.
53.
54.
55.
The structure and function of alluvial Highly Dynamic River Systems (HDRS) are driven by highly variable hydrological disturbance regimes, and alternate between resistant, metastable states and resilient, transitional states. These are in turn subject to influences of feedback loops within hydrogeomorphic and biological processes. Here we consider how resistance and resilience largely determine HDRS ecosystem trajectories and how these characteristics can be modified by natural and anthropogenic processes. We review the mechanisms by which biodiversity can affect both resistance and resilience and introduce a conceptual framework that incorporates some unique HDRS characteristics. We suggest that resilient and resistant patterns frequently coexist in the active tract of these river systems, and that this coexistance promotes the return of metastable states after major disturbances. In contrast, highly resistant and poorly resilient patterns dominate at their external boundaries. The loss of these natural dynamics resulting from direct and indirect human impacts causes deviations to resistance and resilience patterns and therefore to HDRS trajectory. We propose that understanding the role of interactions between biological and physical processes that control resistance and resilience is crucial for system restoration and management.  相似文献   
56.
57.
This study demonstrates the sensitivity of the near-surface properties in the tropical Atlantic Ocean to the high-frequency of the winds in numerical simulations. At intra-seasonal timescales (2–50 days), two distinct period ranges dominate the variability in the upper ocean: periods between 2 and 20 days, which are essentially wind-forced and periods between 20 and 50 days, due mostly to Tropical Instability Waves (TIWs). Using a numerical model forced by different wind fields, it is shown that the characteristics of the intra-seasonal variability in the ocean surface mixed-layer are strongly dependent on the wind forcing. Submonthly winds are shown to force large variability in the upper ocean that can strikingly decrease the amplitude of the TIWs in the mixed-layer and their imprint on the horizontal distribution of sea surface temperatures. Wind products containing too much energy at submonthly periods thus prevent wind-forced simulations from reproducing a realistic surface signature of TIWs, when compared to satellite observations of sea surface temperature. In addition, submonthly wind variability may be responsible for part of the observed interannual variability of the TIW signature in the temperature. The impact of submonthly winds is strongest in the mixed-layer: beneath the mixed-layer, all simulations show similar characteristics of the TIWs.  相似文献   
58.
We develop, calibrate and test a dataset intended to drive global ocean hindcasts simulations of the last five decades. This dataset provides surface meteorological variables needed to estimate air-sea fluxes and is built from 6-hourly surface atmospheric state variables of ERA40. We first compare the raw fields of ERA40 to the CORE.v1 dataset of Large and Yeager (2004), used here as a reference, and discuss our choice to use daily radiative fluxes and monthly precipitation products extracted from satellite data rather than their ERA40 counterparts. Both datasets lead to excessively high global imbalances of heat and freshwater fluxes when tested with a prescribed climatological sea surface temperature. After identifying unrealistic time discontinuities (induced by changes in the nature of assimilated observations) and obvious global and regional biases in ERA40 fields (by comparison to high quality observations), we propose a set of corrections. Tropical surface air humidity is decreased from 1979 onward, representation of Arctic surface air temperature is improved using recent observations and the wind is globally increased. These corrections lead to a significant decrease of the excessive positive global imbalance of heat. Radiation and precipitation fields are then submitted to a small adjustment (in zonal mean) that yields a near-zero global imbalance of heat and freshwater. A set of 47-year-long simulations is carried out with the coarse-resolution (2° × 2°) version of the NEMO OGCM to assess the sensitivity of the model to the proposed corrections. Model results show that each of the proposed correction contributes to improve the representation of central features of the global ocean circulation.  相似文献   
59.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   
60.
The euryhaline ostracod Cyprideis torosa lives in Akyatan Lagoon, Turkey, which is exposed to large spatial and seasonal variations in water salinity, δ18O, and temperature. Hydrogen and oxygen isotope measurements of waters reveal that the large range of salinity (15–80 g L?1) in the lagoon results from a combination of evaporation and mixing between Mediterranean seawater and Seyhan River input. Round sieve-pore relative abundance in C. torosa provides a robust proxy for water salinity (S) from 15 to 80 g L?1, according to the equation: S = 161.41 (±4.52) * log10(% rounded pores) ? 94.04 (±3.44) (R2 = 0.937; p = 10?31). Seasonal sampling and isotope analysis of C. torosa in waters of known δ18O values (?4.7 to +6.9 ‰ V-PDB) and temperatures (15–35 °C) yielded a weak positive correlation (r = 0.71) between 1000 lnα(calcite–water) ‰ V-SMOW) and 103 * T?1. Specimens of C. torosa collected during the mild and warm seasons have oxygen isotope compositions close to those of inorganic calcite precipitated in equilibrium with ambient water. The large oxygen-isotope variability observed during any season of the year most likely results from shell calcification in water bodies of highly variable salinity, alkalinity, Mg/Ca and water saturation relative to calcite. Indeed, distinct water bodies in the Akyatan Lagoon are generated by mixing of fresh and marine waters, which are exposed to different evaporation rates at the seasonal scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号