首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   28篇
  国内免费   5篇
测绘学   4篇
大气科学   78篇
地球物理   178篇
地质学   386篇
海洋学   87篇
天文学   89篇
综合类   1篇
自然地理   84篇
  2024年   2篇
  2022年   2篇
  2021年   15篇
  2020年   18篇
  2019年   18篇
  2018年   20篇
  2017年   26篇
  2016年   32篇
  2015年   33篇
  2014年   29篇
  2013年   55篇
  2012年   41篇
  2011年   62篇
  2010年   46篇
  2009年   42篇
  2008年   48篇
  2007年   51篇
  2006年   50篇
  2005年   41篇
  2004年   23篇
  2003年   22篇
  2002年   26篇
  2001年   15篇
  2000年   18篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   13篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有907条查询结果,搜索用时 15 毫秒
131.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
132.
133.
Sediment is sorted in river bends under the influence of gravity that pulls the heavier grains downslope and secondary flow that drags the finer grains upslope. Furthermore, when dunes are present, sediment is also sorted vertically at the dune lee side. However, sorting functions are poorly defined, since the relation to transverse bed slope and the interaction between lateral and vertical sorting is not yet understood for lack of data under controlled conditions. The objective of this study is to describe lateral sorting as a function of transverse bed slope and to gain an understanding of the interaction between lateral and vertical sorting in river bends. To this end, experiments were conducted with a poorly sorted sediment mixture in a rotating annular flume in which secondary flow intensity can be controlled separately from the main flow velocity, and therefore transverse bed slope towards the inner bend and dune dimensions can be systematically varied. Sediment samples were taken along cross-sections at the surface of dune troughs and dune crests, and over the entire depth at the location of dune crests (bulk samples), which enabled comparison of the relative contribution of vertical sorting by dunes to lateral sorting by the transverse bed slope. The data show that lateral sorting is always the dominant sorting mechanism in bends, and bulk samples showed minor effects of vertical sorting by dunes as long as all grain-size fractions are mobile. An empirical bend sorting model was fitted that redistributes the available sediment fractions over the cross-section as a function of transverse bed slope. Comparison with field data showed that the model accurately reproduces spatially-averaged trends in sorting at the bend apex in single-thread channels. The bend sorting model therefore provides a better definition of bend sorting with conservation of mass by size fraction and adds to current understanding of bend sorting. The implication for numerical modelling is that bend sorting mechanisms can be modelled independently of dunes, allowing the application of the active layer concept.  相似文献   
134.
The absence of fish remains in archaeological sites in Moreton Bay, southeast Queensland, Australia, may be a function of recovery techniques, rather than a reflection of resource paucity and late onset of occupation, as has been posited in archaeological literature. An excavation on Peel Island in Moreton Bay was devised, in part, to test this proposition, and a 1‐mm mesh screen was used to enhance recovery. But sorting this fine fraction took 20 h. In this article we outline experiments to find a more efficient and effective technique for sieving and sorting fine fraction archaeological deposits, using methods borrowed from soil science. We show how sorting time can be reduced to 2 h 30 min per 100 g sample and argue that the vast increase in knowledge about the site occurring as a result of using the very fine mesh sieve warrants the continued application of these laboratory methods. © 2000 John Wiley & Sons, Inc.  相似文献   
135.
136.
137.
Wadsleyite (β-(Mg,Fe)2SiO4) is a major constituent of the Earth's transition zone and is known to accommodate OH. The portion of the transition zone between 400–550 km could be an important source or sink for hydroxyl in plumes and slabs intersecting this region. Micro-infrared spectroscopy has been carried out on the β-phase and coexisting metastable olivine synthesized in a multianvil apparatus at 14 GPa and 1550–1650 K under hydrous conditions. Single-crystal and polycrystal specimens of both phases were analyzed in the 1800–8500 cm?1 frequency region to determine the speciation, abundances, and partitioning behavior of the hydrous components in coexisting β-phase and olivine. β-phase spectra consistently show three distinct OH bands at 3329, 3580, and 3615 cm?1. OH concentrations range from 10000–65000 H/106 Si. A strong positive correlation of grain size and extent of transformation with OH concentration in the β-phase indicates that grain-growth and transformation rates are enhanced in a hydrous environment. Olivine spectra are variable, but consistently show a prominent broad-band absorbance representing molecular H2O, consistent with the infrared signature of the starting material. OH concentrations in olivine range from <300–1400 H/106 Si. The highest OH concentrations measured for olivine and the β-phase may represent solubility limits, in which case the OH solubility ratio between these two phases is approximately 1∶40. Where both phases coexist and are undersaturated with OH, the partitioning ratio of OH between them is about 1∶100. The large solubility contrast between olivine and the β-phase suggests a mechanism for hydrating the transition zone via olivine carried down in subducting slabs. Plumes impinging on an OH-rich upper transition region could cause H2 or H2O to be released upon transformation of the β-phase to olivine, resulting in initiation of secondary upwellings. If dissolution of OH weakens the β-phase, and if OH is present in the mantle, the region between 400–550 km could be a zone of low viscosity.  相似文献   
138.
The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 fpm, with some values reaching 500 fpm. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5–20 min. A distinguishing feature of severe storms is the presence of lightning ‘jumps' — abrupt increases in flash rate in advance of the maximum rate for the storm. The systematic total lightning precursor to severe weather of all kinds — wind, hail, tornadoes — is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the intracloud lightning activity.  相似文献   
139.
Local glaciers and ice caps (GICs) comprise only ~5.4% of the total ice volume, but account for ~14–20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, ~8 to 5 ka). In this study, we use proglacial lake records to constrain the ice‐marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from ~9.4 to 0.2 cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north–south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea‐ice extent and/or increased poleward moisture transport.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号