首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   3篇
  国内免费   3篇
测绘学   20篇
大气科学   11篇
地球物理   13篇
地质学   69篇
海洋学   13篇
天文学   25篇
综合类   3篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   13篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
121.
122.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   
123.
Environmental, biological, socio-cultural and economic status variation existing in the Central Himalaya have led to the evolution of diverse and unique traditional agroecosystems, crop species and livestock, which facilitate the traditional mountain farming societies to sustain themselves. Indigenous agroecosystems are highly site specific and differ from place to place, as they have evolved along divergent lines. For maintenance of traditional agrodiversity management the farmers of the Central Himalaya have evolved various types of crop rotations in consonance with the varied environmental conditions and agronomic requirements. In irrigated flat lands two crops are harvested in a year with negligible fallow period but in rainfed conditions if a cropping sequence is presumed to be starting after winter fallow phase then four major cropping seasons can be identified namely first kharif season (first crop season), first rabi season (second crop season), second kharif season (third crop season) and second rabi season (fourth crop season). Highest crop diversity is present in kharif season in comparison to rabi season. Traditionally the fields are left fallow after harvest of the second kharif season crop. Important characteristics of agrodiversity management are the use of bullocks for draught power, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. Women provide most of the human labour except for ploughing and threshing grain. The present study deals with assessment of traditional agrodiversity management such as (i) crop diversity, (ii) realized yield under the traditional practices and (iii) assess the differences of realized yields under sole and mixed cropping systems. It indicated that crop rotation is an important feature of the Central Himalayan village ecosystem which helps to continue the diversity of species grown, as are the distribution of crops in the growing period and the management of soil fertility. The cropping diversity existing and the sequences practiced by the traditional farmers seems to have achieved high degree of specialization and thus even when the yield/biomass variations are about 60%, the farmers continue to practice these sequences as they need to maintain diversity and synergistic relationships of crops in addition to manage the food and labour requirements for crop husbandry. Crop yields are generally higher in irrigated systems than rainfed systems and in sole cropping as compared with mixed cropping. However, gross biological and economic yields are higher in mixed cropping than sole cropping systems.  相似文献   
124.
Coastal hazard mapping in the Cuddalore region, South India   总被引:1,自引:0,他引:1  
It is estimated that nearly one-third of India’s population lives on the coast and is dependent on its resources. Shoreline erosion, storm surges and extreme events have resulted in severe loss of human life, damage to ecosystems and to property along the coast of India. Studies carried out in the Cuddalore region of South India reveal that this low-lying coastal zone, which suffered significant erosion during the last century, has been severely affected by the tsunami of 2004, storm floods and cyclones. In response to these impacts, a variety of coastal defense measures and adaptation strategies have been implemented in the region, although with only limited success. In order to inform future coastal planning in this region, the work reported here identifies a composite hazard line, seaward of which coastal flooding events will have a return interval of less than 1 in 100 years. The area landward of the coastal hazard line will be unaffected by 100 years of coastal erosion at present day rates. The study directly supports the Integrated Coastal Zone Management (ICZM) Plan of the Tamil Nadu State through the identification and assessment of coastal hazards and the overall vulnerability to coastal flooding and erosion. The key results from this pilot study will be used directly by the State of Tamil Nadu in the protection of the coastal livelihoods, better conservation measures and sustainable development along the coast. This study is a step toward mapping the hazard line for the entire coast of India that helps protect human lives and property.  相似文献   
125.
Quartzitic pelites forms a part of Higher Himalayan Crystalline of higher geotectonic zone in Garhwal Himalaya. Quartzitic pelites (locally known as Pandukeshwar Quartzite) in Garhwal Himalaya is sandwiched between high grade metamorphic rocks of Central Crystallines and Badrinath Formation. Fluid inclusion studies are carried out on the detrital, and recrystallized quartz grains of quartzitic pelites to know about the fluid phases present during recrystallization processes at the time of maximum depth of burial. The quartzitic pelite (Pandukeshwar Quartzite) essentially consists of recrystallised quartz with accessory minerals like mica and feldspar. Fluid microthermometry study reveals the presence of three types of fluids: (i) high-salinity brine, (ii) CO2-H2O and (iii) H2O-NaCl. These fluids were trapped during the development of grain and recrystallization processes. The high saline brine inclusions and CO2-H2O fluid with the density of 0.90 to 0.97 gm/cm3 are remnants of provenance area. CO2 density in detrital quartz grains characterise the protolith of the sandstone as granite or metamorphic rock. The H2O-NaCl fluids involved in the recrystallization processes at temperature-pressure of 430-350°C; 4.8 to 0.5 Kbars as constrained by fluid isochores of CO2-H2O and H2O-NaCl inclusions and bulging and subgrain development during recrystallization processes. The re-equilibration of the primary fluid due to elevated internal and confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration and decrepitation clusters. The observed inclusion morphology revealed that the rocks were exhumed along an isothermal decompression path.  相似文献   
126.
A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, α-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infinite divisibility problems in probability theory and certain fractional integrals and fractional derivatives. A number of applications are pointed out with special reference to solutions of fractional reaction and reaction-diffusion equations and their generalizations.  相似文献   
127.
128.
129.
The subject of this paper is to derive the solution of generalized fractional kinetic equations. The results are obtained in a compact form containing the Mittag-Leffler function, which naturally occurs whenever one is dealing with fractional integral equations. The results derived in this paper provide an extension of a result given by Haubold and Mathai in a recent paper (Haubold and Mathai, 2000). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
130.
Evapotranspiration (ET) is a vital process in land surface atmosphere research. In this study, Surface Energy Balance Algorithm for Land (SEBAL) for the assessment of ET (for 23 December 2010, 8 January 2011, 24 January 2011, 9 February 2011, 25 February 2011, 29 March 2011 and 14 April 2011) from LANDSAT7-ETM+ and validation with Lysimeter data set is illustrated. It is based on the evaporative fraction concept, and it has been applied to LANDSAT7-ETM + (30 m resolution) data acquired over the Indian Agricultural Research Institute’s agricultural farm land. The ET from SEBAL was compared with Lysimeter ET using four statistical tests (root-mean-square error (RMSE), relative root-mean-square error (R-RMSE), mean absolute error (MAE), and normalized root-mean square error (NRMSE)), and each test showed a good correlation between the predicted and observed ET values. Results from this study revealed that the RMSE of crop-growing period was 0.51 mm d?1 for ETSEBAL, i.e. ETSEBAL having good accuracy with respect to observed ETLysimeter. Results were also validated using R-RMSE test, which also proved that ETSEBAL data are having good accuracy with respect to observed ETLysimeter as R-RMSE of crop-growing period is 0.19 mm d?1. MAE (0.19), NRMSE (0.21) and r2 (0.91) tests indicated that model prediction is significant, and model can be effectively used for the estimation of ET from SEBAL as input of remote sensing data sets. Finally, the SEBAL has been useful for remote agricultural land where ground-based data (Lysimeter data) are not available for daily ET (ET24 h) estimation. The temporal study of the ET24 h values analysed has revealed that the highest ET24 h values are owing to the higher development (high greenness) of crops, whereas the lower values are related to the lower development (low greenness) or null crop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号