首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
大气科学   2篇
地球物理   15篇
地质学   46篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   10篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
排序方式: 共有67条查询结果,搜索用时 46 毫秒
41.
Subsurface dissolution (subrosion) of evaporites such as halite and gypsum can lead to extensive land subsidence. Recent land subsidences have been surveyed at six separate locations in northwestern Switzerland. The diameters of the affected surface areas range from 100 to 1,500 m, and corresponding subsidence rates reached more than 100 mm/year. Based on a geometrical model, three sites could be outlined where land subsidence can likely be attributed to salt solution mining. The effects of increased hydrostatic gradient due to both groundwater withdrawal and fluid density contrasts were evaluated in more detail for the remaining sites with a series of 2D density-coupled solute-transport simulations along an approximately 1,000-m-long and 150-m-deep 2D cross section. Simulation results indicate that the upconing process of saline groundwater into the main aquifer occurs under different distributions of subsurface parameters and hydraulic boundary conditions. For the presented setup, the simulations also revealed that the most sensitive factor for the dissolution rate is the structure or dip of the halite formation, which leads to an increase of dissolution rate with increasing dip. Due to the increased density of the brine, an intrinsic flow dynamic develops which follows the direction of the dip.  相似文献   
42.
The Complex Terminal (CT) confined aquifer of the Djerid basin, southwestern Tunisia, was studied using major ion concentrations and stable isotope contents in order to (1) investigate the changes on its hydrodynamic functioning due to the long-term over-pumping and the large-scale flood irrigation practices, (2) determine the principal mineralization processes of its fossil groundwater, and (3) examine the mode of recharge of this aquifer and whether it contains part of modern hydrological regime. The observed geochemical patterns indicated that the main mineralization processes affecting the CT groundwater water/rock interactions and mixing. The native Na > Cl and Cl > SO4 > Ca > Na waters, resulting from the dissolution of halite and gypsum and from pyrite oxidation, interacted with those of the underlying and the overlying aquifers without changing their chemical facies. Stable isotope data provided evidences about upward and downward leakage into the CT aquifer and their relationships with anthropogenic activities. They demonstrated that the long-term over-pumping of the CT aquifer, which contributed to the loss of its potentiometric pressure, favored the upward leakage of the artesian deep groundwater along parts of the major faults. Moreover, the large-scale flood irrigation practices in the oases domain, which ensured the recharge of the shallow water table by return flow, enhanced the downward leakage toward the CT aquifer.  相似文献   
43.
The Satpura Gondwana basin hosts a ~5 km thick siliciclastic succession that unconformably overlies the Precambrian basement. The Gondwana sequence in this basin starts from Early Permian (Talchir Formation) to Lower Cretaceous (Jabalpur Formation). The aim of this study is to (1) identify the source rock (provenance) for Early Triassic Pachmarhi sediments in the Satpura Gondwana succession and (2) to understand the relative role of tectonics and climate in determining the sandstone composition. These sandstones are medium to coarse-grained, moderately to moderately well sorted, subangular to subrounded, of moderate sphericity, and composed of several varieties of quartz, feldspar, rock fragments, and micas. Petrographically, the Pachmarhi sandstones are mostly quartzarenite and subarkose. The petrofacies in Qt–F–L and Qm–F–Lt triangular diagrams show that the bulk of the Pachmarhi was derived from continental (cratonic) source, especially from craton interior. Petrofacies, together with paleocurrent data, suggest that Pachmarhi Formation was deposited by a network of braided river system, which flowed dominantly from southeast to northwest. The study suggests that the sediments were mostly derived from Precambrian granites, gneiss, and metasedimentary basement rocks straddling the southern margin of the basin. Paleocurrent data also corroborates this contention.  相似文献   
44.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   
45.
We present a new method of measuring the Venus winds by Doppler velocimetry on the full visible spectrum of solar light scattered by the clouds. In January 2003, we carried out observations to measure the winds of Venus, using the EMILIE high-resolution, cross-dispersed spectrograph and its associated calibrating instrument the Absolute Astronomical Accelerometer (AAA), at Observatoire de Haute-Provence, France. The motivation of this type of measurements is that it measures the actual velocity of cloud particles, while the other method (track of cloud features) may be sensitive to the deformation of the clouds. During observations, Venus was near maximum western elongation, at a phase angle near 90°. The EMILIE-AAA system allows us to measure accurately the Doppler shift induced in the reflected solar spectrum by the radial component of the motion of the clouds of Venus. We present the measurements and compare them with a forward simulation of a solid super-rotation of the atmosphere of Venus. Taking into account the Doppler shift relative to the Sun and that relative to the Earth, the theoretical total Doppler shift induced in the solar spectra is easily computed as a function of the velocity of the reflecting target. A first forward simulation is computed, with a wind model considering a purely horizontal and zonal wind. The magnitude of the wind is assumed to depend on cos(latitude), as for a solid-body rotation. The comparison with the measurements at various points on the illuminated semi-disc allowed us to determine an equatorial velocity of 66, 75, 91 and 85 m/s on 4 consecutive mornings, consistent with previous ultraviolet cloud tracking wind measurements, showing that wave propagation is not a major factor in the apparent motion of the cloud marks. Further, we discuss the effect of the finite angular size of the Sun and its rapid equatorial rotation (that we call the Young effect). It mainly affects measurements taken near the terminator, where the largest discrepancies are found. These discrepancies are alleviated when the Young effect is taken into account in the model but then the retrieved Venus equatorial velocity is reduced to only 48±3 m/s. This is well below classical ultraviolet markings velocities, but the altitude at which the visible photons are scattered (66 km) that we use is 5 km below the UV markings, confirming the vertical gradient of the horizontal winds shown by previous in-situ measurements.  相似文献   
46.
The Choghart magnetite-apatite deposit situated in the Bafq district, Central Iran, has been scrutinized for rare earth elements (REEs) by precise geochemical investigation. The Central Iran is a susceptible area of rare earth elements. One of the Choghart’s prominent points is the existence of hydrothermal zones which made prediction of REEs occurrence within the deposit possible. Choghart is placed within felsic volcanic tuffs, rhyolitic rocks, and volcanic sedimentary sections belonging to the lower Cambrian. Abundance and distribution pattern of REEs in Choghart iron deposits reveal a part of deposit formation and its mineralogical modifications. Petrography and mineralogy of the ore body demonstrated two main types of alterations (sodic and calcic) associated with iron ore mineralization in Choghart deposit. The main ore includes a large quantity of massive magnetite in the lower part of Choghart deposit. The minor mineralization involves apatite, pyrite, alkaline amphibole, especially actinolite and tremolite, calcite, talc, quart, monazite, and bastnasite. Geochemical sampling from north–northeast (N-NE) side of the mine denotes the presence of these elements in hydrothermal zones. Statistical populations of the area were categorized by fractal geometry into four main differentiations: host rock type (albitofyre), iron, metasomatose, phosphate zones, and a subset of the phosphate zone which is named high iron high phosphate type. REEs like lanthanum, neodymium, yttrium, and niobium constitute the most quantity of Choghart. Deposit characteristics demonstrate its similarity to Kiruna type. The significant feature of iron oxide-apatite deposits of Kiruna ore type is the existence of monazite inclusions within apatite. These inclusions were also observed within apatite type I and II of Choghart mineralization. Moreover, REEs geochemistry in Choghart deposit was identified by investigation on geochemical data analyses. The analysis represents negative Eu anomaly and further enrichment of light REEs compared to the heavy ones. Chondrite normalized REEs patterns are defined by negative anomalies of Eu, which is the main characteristic of Kiruna ore type. The results showed that REEs concentration in phosphate zone, as a high absorption of REEs, is much higher than metsomatose, albitofyre, and iron zones. REEs distribution in N-NE side of the mine indicated that the contact of iron ore with tailings in N-NW side of the mine leads REEs to be enriched nearly 1% , as well as that of NE with high contents of REEs 1.5% ), which is very significant.  相似文献   
47.
A new and high efficient scheme is developed for the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the Advection–Dispersion transport Equation (ADE) on unstructured triangular meshes. To obtain accurate results, the new method requires a very limited number of integration points (usually 1 per element).  相似文献   
48.
A three-dimensional (3D) mass transport numerical model is presented. The code is based on a particle tracking technique: the random-walk method, which is based on the analogy between the advection–dispersion equation and the Fokker–Planck equation. The velocity field is calculated by the mixed hybrid finite element formulation of the flow equation. A new efficient method is developed to handle the dissimilarity between Fokker–Planck equation and advection–dispersion equation to avoid accumulation of particles in low dispersive regions. A comparison made on a layered aquifer example between this method and other algorithms commonly used, shows the efficiency of the new method. The code is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between simulated and measured values, with and without the presented method, also proves the accuracy of the new algorithm.  相似文献   
49.
Tunisian Chott’s region is one of the most productive artesian basins in Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and by hydrologic characteristics such as the flow pattern and time of residence. The system is composed of an upper unconfined “Plio-Quaternary” aquifer with a varying thickness of 20–200 m, an intermediate confined/unconfined “Complex Terminal” aquifer about 100 m in thickness and a deeper “Continental Intercalaire” aquifer about 150 m in thickness separated by thick clay and marl layers. The dissolution of evaporites and carbonates explains part of the contained Na+, Ca2+, Mg2+, K+, SO42− and Cl-, but other processes, such carbonate precipitation, also contributes to the water composition. The stable isotope composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the Plio-Quaternary aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater.  相似文献   
50.
The lithology of the studied aquifers has an important effect on their hydrogeologic setting. Moreover, the structural patterns have their imprint on the geologic setting and consequently the hydrogeologic conditions of the area. Lake Nasser recharges the groundwater in the study area by large amount of water increasing the groundwater level. A comparison of the depth to water in the same wells at two different periods (1998 and 2014 ) shows that the depth to water increases with average rise 11.1 m during 16 years. The constructed water table map shows that the groundwater flow is mainly towards the northwest direction reflecting recharge from Lake Nasser. The hydraulic parameters of the Abu Aggag and Sabaya sandstone aquifers are determined in the present work from pumping tests. The transmissivity of the studied aquifers reflects the moderate to high potentiality. The groundwater salinity of the studied aquifers is fresh water and varies from 353 to 983 ppm (part per million) and suitable for all purposes. It increases due to the west direction coinciding with groundwater flow direction. The main result of the present study shows that the seepage water from Lake Nasser attains 17 mcm/year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号