首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72634篇
  免费   970篇
  国内免费   1236篇
测绘学   2659篇
大气科学   5742篇
地球物理   13685篇
地质学   27264篇
海洋学   5171篇
天文学   13666篇
综合类   2255篇
自然地理   4398篇
  2020年   344篇
  2019年   345篇
  2018年   5405篇
  2017年   4676篇
  2016年   3535篇
  2015年   925篇
  2014年   1244篇
  2013年   2472篇
  2012年   2048篇
  2011年   4118篇
  2010年   3359篇
  2009年   4142篇
  2008年   3578篇
  2007年   4027篇
  2006年   1744篇
  2005年   1739篇
  2004年   1905篇
  2003年   1814篇
  2002年   1599篇
  2001年   1285篇
  2000年   1220篇
  1999年   1139篇
  1998年   1083篇
  1997年   1061篇
  1996年   844篇
  1995年   837篇
  1994年   794篇
  1993年   739篇
  1992年   709篇
  1991年   678篇
  1990年   776篇
  1989年   675篇
  1988年   649篇
  1987年   742篇
  1986年   620篇
  1985年   824篇
  1984年   947篇
  1983年   912篇
  1982年   862篇
  1981年   835篇
  1980年   739篇
  1979年   698篇
  1978年   692篇
  1977年   627篇
  1976年   602篇
  1975年   518篇
  1974年   597篇
  1973年   586篇
  1972年   362篇
  1971年   334篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
801.
A sensitivity analysis of the waterline method of constructing a Digital Elevation Model (DEM) of an intertidal zone using remote sensing and hydrodynamic modelling is described. Variation in vertical height accuracy as a function of beach slope is investigated using a set of nine ERS Synthetic Aperture Radar (SAR) images of the Humber/Wash area on the English east coast acquired between 1992 and 1994. Waterlines from these images are heighted using a hydrodynamic tide-surge model and interpolated using block kriging. On 1:500 slope beaches, an average block height estimation standard deviation of 18–22 cm is achieved. This rises to 27 cm on 1:100 slope beaches, and 32 cm on 1:30 slope beaches. The average heighting error at different slopes is decomposed into components due to waterline heighting error, inadequate sensor resolution and interpolation inaccuracy. It is shown that, at 1:500 slope, waterline heighting error and interpolation inaccuracy are the main error sources, whilst at 1:30 slope, errors due to inadequate sensor resolution become dominant. The ability of the technique to generate intertidal DEMs for almost the entire coastal zone in a complete ERS SAR scene covering 100×100 km is demonstrated.  相似文献   
802.
803.
804.
The ridge located between 31° S and 34°30′S is spreading at a rate of 35 mm yr−1, a transitional velocity between the very slow (≤20 mm yr−1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr−1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A relatively low mantle Bouguer anomaly is known to be associated with the ridge segment characterized by a gently rifted axial bulge and is interpreted to indicate the presence of focused mantle upwelling (Kuo and Forsyth, 1988). Moreover, the terrain at the ends of each segment are known to be highly magnetized compared to the centers of each segment (Carbotte et al, 1990). Taken together, these data clearly establish that these profound spatial variations in ridge segment properties between adjoining segments, and along and across each segment, indicate that the upper mantle processes responsible for the formation of this contrasting architecture are not solely related to passive upwelling of the asthenosphere beneath the ridge axis. Rather, there must be differences in the thermal and mechanical structure of the crust and upper mantle between and along the ridge segments to explain these spatial variations in axial topography, crustal structure and magnetization. These results are consistent with the results of investigations from other parts of the ridge and suggest that the emplacement of magma is highly focused along segments and positioned beneath the depth minimum of a given segment. The profound differences between segments indicate that the processes governing the behavior of upwelling mantle are decoupled and the variations in the patterns of axis flanking morphology and rate of accretion indicate that processes controlling upwelling and melt production vary markedly in time as well. At this spreading rate and in this area, the accretionary processes are clearly three-dimensional. In addition, the morphology of a ridge segment is not governed so much by opening rate as by the thermal structure of the mantle which underlies the segment.  相似文献   
805.
806.
The importance of the diet as a source of tributyltin (TBT) in Nucella lapillus was studied using [14C]tributyltin chloride. In N. lapillus provided with prelabelled mussels, Mytilus edulis, in labelled water (mean 20·5 ng/litre TBT) the rate of accumulation of total 14C was 2–3 times that in unfed animals. Owing to its degradation in the tissues of both fed and unfed animals, concentrations of [14C]TBT tended to reach a plateau after only 28 days. However, total concentrations of 14C were still increasing after 49 days. Under experimental conditions (15°C, ample food, no disturbance) the diet accounted for about 50% of the body burden of TBT in N. lapillus after 49 days exposure: concentration factors (dry tissue/water) for [14C]TBT in both male and female N. lapillus were similar at about 60 000 in fed and 30 000 in unfed animals. It is concluded that the diet may contribute less than half of the body burden of TBT found in natural populations subjected to life-long exposure.  相似文献   
807.
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.  相似文献   
808.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   
809.
Rapid shifts in past climate recorded in polar ice sheets have elicited various explanations relating to either thermohaline circulation changes by ice-rafting or natural greenhouse gas concentrations modulated by climatic conditions in the tropics. To compare the tropical paleoclimate record with the polar record, one must choose sediment cores from highly productive ocean regions. Necessarily, such regions reflect the wind records in the tropics, because high productivity is associated with upwelling driven by winds. Comparing tropical precipitation records with high-latitude records is, however, a more difficult task because sediments recording paleoprecipitation usually have low sedimentation rates, and offer coarser resolution relative to polar ice cores. Here, we present δ 18O data of three planktonic species of Foraminifera (a proxy for precipitation) from such a sediment core, spanning the past 35 ka for the equatorial Indian Ocean, which falls under the southwest monsoon (SWM) realm. Results show that minimum SWM precipitation occurred at the Last Glacial Maximum, with a subsequent increase at Termination IA. During the Holocene, SWM precipitation intensified uniformly up to the core top (∼2.2 ka b.p.), as revealed by generally decreasing δ 18O values. Variations in precipitation are consistent with climate changes recorded in polar ice sheets. Although the different resolutions of the two records preclude a rigorous comparison, abrupt cooling/warming events appear to be accompanied by sudden reduction/enhancement in (SWM) rainfall. Thus, mechanisms with time scales much shorter than a millennium, such as natural greenhouse warming (e.g., CH4 concentration), controlled by emissions from the tropics, could have played a major role in high-latitude climate change.  相似文献   
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号