首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3368篇
  免费   145篇
  国内免费   37篇
测绘学   118篇
大气科学   332篇
地球物理   862篇
地质学   994篇
海洋学   339篇
天文学   525篇
综合类   11篇
自然地理   369篇
  2022年   13篇
  2021年   59篇
  2020年   70篇
  2019年   59篇
  2018年   80篇
  2017年   96篇
  2016年   121篇
  2015年   103篇
  2014年   118篇
  2013年   224篇
  2012年   134篇
  2011年   180篇
  2010年   149篇
  2009年   178篇
  2008年   172篇
  2007年   167篇
  2006年   170篇
  2005年   126篇
  2004年   118篇
  2003年   117篇
  2002年   101篇
  2001年   68篇
  2000年   76篇
  1999年   52篇
  1998年   54篇
  1997年   43篇
  1996年   37篇
  1995年   40篇
  1994年   29篇
  1993年   28篇
  1992年   29篇
  1991年   27篇
  1990年   18篇
  1989年   34篇
  1988年   16篇
  1987年   33篇
  1986年   18篇
  1985年   43篇
  1984年   46篇
  1983年   29篇
  1982年   27篇
  1981年   40篇
  1980年   23篇
  1979年   23篇
  1978年   22篇
  1977年   17篇
  1976年   19篇
  1975年   18篇
  1974年   15篇
  1973年   16篇
排序方式: 共有3550条查询结果,搜索用时 15 毫秒
91.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   
92.
The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation systems have been systematically applied to the mesoscale circulation environment of the California Current to demonstrate the performance and practical utility of the various components of ROMS 4D-Var. In particular, we present a comparison of three approaches to 4D-Var, namely: the primal formulation of the incremental strong constraint approach; the dual formulation “physical-space statistical analysis system”; and the dual formulation indirect representer approach. In agreement with theoretical considerations all three approaches converge to the same ocean circulation estimate when using the same observations and prior information. However, the rate of convergence of the dual formulation was found to be inferior to that of the primal formulation. Other aspects of the 4D-Var performance that relate to the use of multiple outer-loops, preconditioning, and the weak constraint are also explored. A systematic evaluation of the impact of the various components of the 4D-Var control vector (i.e. the initial conditions, surface forcing and open boundary conditions) is also presented. It is shown that correcting for uncertainties in the model initial conditions exerts the largest influence on the ability of the model to fit the available observations. Various important diagnostics of 4D-Var are also examined, including estimates of the posterior error, the information content of the observation array, and innovation-based consistency checks on the prior error assumptions. Using these diagnostic tools, we find that more than 90% of the observations assimilated into the model provide redundant information. This is a symptom of the large percentage of satellite data that are used and to some extent the nature of the data processing employed. This is the second in a series of three papers describing the ROMS 4D-Var systems.  相似文献   
93.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   
94.
TIMS and SHRIMP U–Pb analyses of zircons from Milford Orthogneiss metadiorite (P = 1–1.4 GPa; T ≥ 750°C) of the Arthur River Complex of northern Fiordland reveal a bimodal age pattern. Zircons are predominantly either Paleozoic (357.0 ± 4.2 Ma) and prismatic with oscillatory zoning, or Cretaceous (133.9 ± 1.8 Ma) and ovoid with sector or patchy zoning. The younger age component is not observed overgrowing older grains. Most grains of both ages are overgrown by younger Cretaceous (~120 Ma) metamorphic zircon with very low U and Th/U (0.01). We interpret the bimodal ages as indicating initial igneous emplacement and crystallisation of a dioritic protolith pluton at ~357 Ma, followed by Early Cretaceous granulite-facies metamorphism at ~134 Ma, during which a significant fraction (~60%) of the zircon grains dissolved, and subsequently reprecipitated, effectively in situ, in partial melt pockets. The remaining ~40% of original Paleozoic grains were apparently not in contact with the partial melt, remained intact, and show only slight degrees of Pb loss. Sector zoning of the Cretaceous grains discounts their origin by solid state recrystallisation of Paleozoic grains. The alternative explanation—that the Paleozoic component represents a 40% inherited component in an Early Cretaceous transgressive dioritic magma—is considered less likely given the relatively high solubility of zircon in magma of this composition, the absence of 134 Ma overgrowths, the single discrete age of the older component, equivalent time-integrated 177Hf/176Hf compositions of both age groups, and the absence of the Cambrian-Proterozoic detrital zircon that dominates regional Cambro-Ordovician metasedimentary populations. Similar bimodal Carboniferous-Early Cretaceous age distributions are characteristic of the wider Arthur River Complex; 8 of 12 previously dated dioritic samples have a Paleozoic component averaging 51%. Furthermore, the age and chemical suite affinity of these and several more felsic rocks can be matched with those of the relatively unmetamorphosed Carboniferous plutonic terrane along the strike of the Mesozoic margin in southern Fiordland, also supporting the in situ derivation of the Carboniferous “inherited” component.  相似文献   
95.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
96.
Abstract– To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact‐related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine‐target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact‐related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine‐target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.  相似文献   
97.
We have surveyed a ∼0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to  2500 M  . Part of the W3 GMC is subject to an interaction with the H  ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5–13 per cent in the undisturbed cloud but ∼25–37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.  相似文献   
98.
Using the Saturn Thermosphere Ionosphere Model (STIM), we present a study of the diurnal variation of electron density, with a focus on comparisons with peak electron densities (NMAX) inferred from the low-frequency cutoff of radio emission due to lightning in the lower atmosphere, called Saturn Electrostatic Discharges (SEDs). It is demonstrated that photochemistry in Saturn’s ionosphere cannot reproduce the SED-inferred diurnal variation in NMAX unless additional production and loss sources outside of the current best estimates are considered. Additional explanations of the SED-inferred diurnal variation of NMAX are presented and analyzed, such as the possibility that the low-frequency cutoff seen in SEDs is due to the presence of sharp low-altitude layers of plasma, as frequently seen in radio occultation measurements. Finally, we outline the observational constraints that must be fulfilled by any candidate explanations of the SED-inferred diurnal variation of NMAX.  相似文献   
99.
The Late Pleistocene stratigraphy from the Severnaya Dvina‐Vychegda region of northwestern Russia is revised based on investigations of new localities, revisiting earlier localities, introduction of about 110 new OSL dates and burial depth corrections of earlier published OSL dates, in addition to six new radiocarbon dates. Most of the OSL samples studied here are from fluvial and subaquaeous sediments, which we found to be well bleached. Six chronostratigraphical units and their sedimentary environment are described, with the oldest unit consisting of pre‐Eemian glacial beds. For the first time, Early Weichselian sediments are documented from the region and a fluvial environment with some vegetation and permafrost conditions is suggested to have persisted from the end of the Eemian until at least about 92 ka ago. The period in which a Middle Weichselian White Sea Lake could have existed is constrained to 67?62 ka, but as the lake level never reached the thresholds of the drainage basin, the lake probably existed only for a short interval within this time‐span. Blocking and reversal of fluvial drainage started again around 21?20 ka ago when the Fennoscandian Ice Sheet advanced into the area, reaching its maximum 17?15 ka ago. At that time, an ice‐dammed lake reached its maximum water level, which was around 135 m above present sea level. Drainage of the lake started shortly after 15 ka ago, and the lake was emptied within 700 years. Severe periglacial conditions, with permafrost and aeolian activity, prevailed in the area until about 10.7 ka.  相似文献   
100.
This paper provides an overview of the history and current status of landslide susceptibility and hazard mapping for land-use zoning in Australia. It also describes a case study of landslide hazard mapping in a medium density, coastal, suburban residential area of metropolitan Sydney, New South Wales, Australia, with relatively steep terrain. Issues covered include identification and mapping of existing and potential landslides, and susceptibility and hazard zoning for regulatory management and land-use planning. The method involves application of the principles contained within the AGS (2000) guideline, and as updated by the AGS (2007 a,b,c,d,e) suite of guidelines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号