首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2561篇
  免费   119篇
  国内免费   33篇
测绘学   88篇
大气科学   292篇
地球物理   653篇
地质学   778篇
海洋学   215篇
天文学   358篇
综合类   6篇
自然地理   323篇
  2024年   6篇
  2022年   13篇
  2021年   50篇
  2020年   59篇
  2019年   54篇
  2018年   66篇
  2017年   81篇
  2016年   107篇
  2015年   88篇
  2014年   97篇
  2013年   182篇
  2012年   117篇
  2011年   157篇
  2010年   121篇
  2009年   140篇
  2008年   140篇
  2007年   141篇
  2006年   132篇
  2005年   108篇
  2004年   91篇
  2003年   92篇
  2002年   82篇
  2001年   51篇
  2000年   58篇
  1999年   38篇
  1998年   34篇
  1997年   30篇
  1996年   28篇
  1995年   30篇
  1994年   18篇
  1993年   19篇
  1992年   12篇
  1991年   17篇
  1990年   15篇
  1989年   28篇
  1988年   11篇
  1987年   20篇
  1986年   11篇
  1985年   22篇
  1984年   14篇
  1983年   14篇
  1982年   12篇
  1981年   18篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
排序方式: 共有2713条查询结果,搜索用时 15 毫秒
101.
Hydrogeology Journal - Pahute Mesa (Nevada, USA) was the site of 85 underground nuclear tests between 1965 and 1992 whose residual radiochemical inventory poses a contaminant threat to local...  相似文献   
102.
A key to understanding Late Pleistocene megafaunal extinction dynamics is knowledge of megafaunal ecological response(s) to long-term environmental perturbations. Strategically, that requires targeting fossil deposits that accumulated during glacial and interglacial intervals both before and after human arrival, with subsequent palaeoecological models underpinned by robust and reliable chronologies. Late Pleistocene vertebrate fossil localities from the Darling Downs, eastern Australia, provide stratigraphically-intact, abundant megafaunal sequences, which allows for testing of anthropogenic versus climate change megafauna extinction hypotheses. Each stratigraphic unit at site QML796, Kings Creek Catchment, was previously shown to have had similar sampling potential, and the basal units contain both small-sized taxa (e.g., land snails, frogs, bandicoots, rodents) and megafauna. Importantly, sequential faunal horizons show stepwise decrease in taxonomic diversity with the loss of some, but not all, megafauna in the geographically-small palaeocatchment. The purpose of this paper is to present the results of our intensive, multidisciplinary dating study of the deposits (>40 dates). Dating by means of accelerator mass spectrometry (AMS) 14C (targeting bone, freshwater molluscs, and charcoal) and thermal ionisation mass spectrometry U/Th (targeting teeth and freshwater molluscs) do not agree with each other and, in the case of AMS 14C dating, lack internal consistency. Scanning electron microscopy and rare earth element analyses demonstrate that the dated molluscs are diagenetically altered and contain aragonite cements that incorporated secondary young C, suggesting that such dates should be regarded as minimum ages. AMS 14C dated charcoals provide ages that occur out of stratigraphic order, and cluster in the upper chronological limits of the technique (~40–48 ka). Again, we suggest that such results should be regarded as suspicious and only minimum ages. Subsequent OSL and U/Th (teeth) dating provide complimentary results and demonstrate that the faunal sequences actually span ~120–83 ka, thus occurring beyond the AMS 14C dating window. Importantly, the dates suggest that the local decline in biological diversity was initiated ~75,000 years before the colonisation of humans on the continent. Collectively, the data are most parsimoniously consistent with a pre-human climate change model for local habitat change and megafauna extinction, but not with a nearly simultaneous extinction of megafauna as required by the human-induced blitzkrieg extinction hypothesis. This study demonstrates the problems inherent in dating deposits that lie near the chronological limits of the radiocarbon dating technique, and highlights the need to cross-check previously-dated archaeological and megafauna deposits within the timeframe of earliest human colonisation and latest megafaunal survival.  相似文献   
103.
Compared to other environmental issues, such as Global Warming/Climatic Change, and the Ozone Hole, Desertification has been neglected by both scientists and funding agencies. The reasons are the complexity of the problem and the poverty and marginality of the arid lands. The author suggests a policy-oriented definition and draws attention to the differences between drought, desiccation and dry-land degradation.  相似文献   
104.
The sulfide (H2S/HS?) that is emitted from hydrothermal vents begins to oxidize abiotically with oxygen upon contact with ambient bottom water, but the reaction kinetics are slow. Here, using in situ voltammetry, we report detection of the intermediate sulfur oxidation products polysulfides [ $ {\text{S}}_{\text{x}}^{2 - } $ ] and thiosulfate [ $ {\text{S}}_{ 2} {\text{O}}_{ 3}^{ 2- } $ ], along with contextual data on sulfide, oxygen, and temperature. At Lau Basin in 2006, thiosulfate was identified in less than one percent of approximately 10,500 scans and no polysulfides were detected. Only five percent of 11,000 voltammetric scans taken at four vent sites at Lau Basin in May 2009 show either thiosulfate or polysulfides. These in situ data indicate that abiotic sulfide oxidation does not readily occur as H2S contacts oxic bottom waters. Calculated abiotic potential sulfide oxidation rates are <10?3 ??M/min and are consistent with slow oxidation and the observed lack of sulfur oxidation intermediates. It is known that the thermodynamics for the first electron transfer step for sulfide and oxygen during sulfide oxidation in these systems are unfavorable, and that the kinetics for two electron transfers are not rapid. Here, we suggest that different metal catalyzed and/or biotic reaction pathways can readily produce sulfur oxidation intermediates. Via shipboard high-pressure incubation experiments, we show that snails with chemosynthetic endosymbionts do release polysulfides and may be responsible for our field observations of polysulfides.  相似文献   
105.
106.
Hydrocarbons occur in two regional, Upper Cretaceous limestone units—the Turonian-Coniacian Petrel Member, and the Santonian-Maastrichtian Wyandot Formation. The units form important seismic markers beneath the Scotian Shelf and the Grand Banks of Eastern Canada. They mainly consist of bioturbated chalk and minor amounts of calcareous mudstone. A search for source rock using the Δ log R technique showed intervals with source potential, but testing of core and cuttings by Rock-Eval analysis showed no source potential. Three issues are the main cause for the inconsistency: (1) unconsolidated shales that likely included organic material were lost during sample washing; (2) severe contamination by mud additives; and (3) presence of gas. The organic matter found on the shelf has been strongly oxidised, but the distal facies of these limestone units and condensed shale units above and below may yet have potential to form source rock, beyond the studied areas.  相似文献   
107.
The atomic and electronic structure of mineral surfaces affects many environmentally important processes such as adsorption phenomena. They are however rarely considered relevant to dissimilatory bacterial reduction of iron and manganese minerals. In this regard, surface area and thermodynamics are more commonly considered. Here we take a first step towards understanding the nature of the influence of mineral surface structure upon the rate of electron transfer from Shewanella oneidensis strain MR-1 outer membrane proteins to the mineral surface and the subsequent effect upon cell “activity.” Cell accumulation has been used as a proxy for cell activity at three iron oxide single crystal faces; hematite (001), magnetite (111) and magnetite (100). Clear differences in cell accumulation at, and release from the surfaces are observed, with significantly more cells accumulating at hematite (001) compared to either magnetite face whilst relatively more cells are released into the overlying aqueous phase from the two magnetite faces than hematite. Modeling of the electron transfer process to the different mineral surfaces from a decaheme (protoporphyrin rings containing a central hexacoordinate iron atom), outer membrane-bound cytochrome of S. oneidensis has been accomplished by employing both Marcus and ab initio density functional theories. The resultant model of electron transfer to the three oxide faces predicts that over the entire range of expected electron transfer distances the highest electron transfer rates occur at the hematite (001) surface, mirroring the observed cell accumulation data. Electron transfer rates to either of the two magnetite surfaces are slower, with magnetite (111) slower than hematite (001) by approximately two orders of magnitude. A lack of knowledge regarding the structural details of the heme-mineral interface, especially in regards to atomic distances and relative orientations of hemes and surface iron atoms and the conformation of the protein envelope, precludes a more thorough analysis. However, the results of the modeling concur with the empirical observation that mineral surface structure has a clear influence on mineral surface-associated cell activity. Thus surface structure effects must be accounted for in future studies of cell-mineral interactions.  相似文献   
108.
The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today’s. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column.Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE anomalies and thus evidence for this oxide shuttle. In contrast, Archean Fe formations do not display REE + Y patterns indicative of an oxide shuttle, which implies an absence of a distinct Mn redoxcline prior to the rise of atmospheric oxygen in the early Paleoproterozoic. As further evidence for reducing conditions in shallow-water environments of the Archean ocean, REE data for carbonates deposited on shallow-water Archean carbonate platforms that stratigraphically underlie Fe formations also lack negative Ce anomalies. These results question classical models for deposition of Archean Fe formations that invoke oxidation by free oxygen at or above a redoxcline. In contrast, we add to growing evidence that metabolic Fe oxidation is a more likely oxidative mechanism for these Fe formations, implying that the Fe distribution in Archean oceans could have been controlled by microbial Fe uptake rather than the oxidative potential of shallow-marine environments.  相似文献   
109.
In 2001 a partial skeleton of an Iguanodon was discovered in the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks near Ockley, Surrey, UK. When the dinosaur was excavated, a detailed stratigraphic section was logged and 25 samples taken for palynological and micropalaeontological (ostracod and megaspore) analysis, including a detailed sample set of the dinosaur bed itself. Qualitative and quantitative analysis of the palynoflora revealed rich and well-preserved non-marine assemblages of pollen and spores, including early angiosperms, and freshwater green algae. Four types of angiosperm pollen are described and assigned to the genus Retimonocolpites Pierce, 1961, but left in open nomenclature. Some marine elements such as dinoflagellate cysts are identified as the result of reworking of Middle and Upper Jurassic sediments. The pollen/spore assemblages depict a vegetational change from principally gymnosperm-dominated assemblages at the base to principally pteridophyte-dominated assemblages at the top of the section. The dinosaur bed shows a pteridophyte-dominated assemblage, with a significantly high amount of the freshwater green alga Scenedesmus novilunaris He Cheng-quan et al., 1992. Samples close to the dinosaur bed yielded the first useful ostracod finds from Smokejacks Brickworks: well-preserved assemblages containing Cypridea clavata (Anderson, 1939), Damonella cf. pygmaea (Anderson, 1941), Stenestroemia cf. cressida Anderson, 1971 and Stenestroemia sp. A, and fragments and damaged valves of a thin-shelled ostracod, possibly belonging to Mantelliana Anderson, 1966. Those identified as Cypridea clavata show a wide range of morphological variety and in opposition to Anderson's (1967, 1985) taxonomic scheme, which would assign them to up to five different taxa, they are considered to be intraspecific variants of a single species. The possibilities and limitations of age determination of the Wealden sediments using palynomorphs and ostracods are discussed; distinct forms of early angiosperm pollen, together with the ostracod fauna, are consistent with an early Barremian age. Pollen and spores are discussed in terms of their parent plants and the reconstruction of vegetation and palaeoclimate. Palynology and ostracods give evidence for temporary freshwater conditions at the time when the Iguanodon died and the carcase was buried.  相似文献   
110.
Earth’s core may contain C, and it has been suggested that C in the core could stabilize the formation of a solid inner core composed of Fe3C. We experimentally examined the Fe-C system at a pressure of 5 GPa and determined the Fe-C phase diagram at this pressure. In addition, we measured solid metal/liquid metal partition coefficients for 17 trace elements and examined the partitioning behavior between Fe3C and liquid metal for 14 trace elements. Solid metal/liquid metal partition coefficients are similar to those found in one atmosphere studies, indicating that the effect of pressure to 5 GPa is negligible. All measured Fe3C/liquid metal partition coefficients investigated are less than one, such that all trace elements prefer the C-rich liquid to Fe3C. Fe3C/liquid metal partition coefficients tend to decrease with decreasing atomic radii within a given period. Of particular interest, our 5 GPa Fe-C phase diagram does not show any evidence that the Fe-Fe3C eutectic composition shifts to lower C contents with increasing pressure, which is central to the previous reasoning that the inner core may be composed of Fe3C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号