首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2579篇
  免费   149篇
  国内免费   32篇
测绘学   89篇
大气科学   291篇
地球物理   673篇
地质学   793篇
海洋学   222篇
天文学   359篇
综合类   6篇
自然地理   327篇
  2022年   13篇
  2021年   49篇
  2020年   61篇
  2019年   53篇
  2018年   67篇
  2017年   80篇
  2016年   108篇
  2015年   89篇
  2014年   97篇
  2013年   186篇
  2012年   117篇
  2011年   157篇
  2010年   121篇
  2009年   141篇
  2008年   144篇
  2007年   140篇
  2006年   132篇
  2005年   110篇
  2004年   92篇
  2003年   94篇
  2002年   84篇
  2001年   52篇
  2000年   59篇
  1999年   41篇
  1998年   37篇
  1997年   31篇
  1996年   29篇
  1995年   30篇
  1994年   20篇
  1993年   19篇
  1992年   13篇
  1991年   17篇
  1990年   15篇
  1989年   28篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   23篇
  1984年   15篇
  1983年   14篇
  1982年   12篇
  1981年   20篇
  1980年   11篇
  1979年   16篇
  1978年   12篇
  1977年   8篇
  1976年   7篇
  1975年   9篇
  1974年   8篇
  1969年   6篇
排序方式: 共有2760条查询结果,搜索用时 15 毫秒
591.
Seasonal water storage in high-elevation alpine catchments are critical sources of water for mountainous regions like the western U.S. The spatial distribution of snow in these topographically complex catchments is primarily governed by orography, solar radiation, and wind redistribution. While the effect of solar shading is relatively consistent from year-to-year, the redistribution of snow due to wind is more variable – capable of producing snowpacks that have varying degrees of uniformity across these hydrologically-important catchments. A reasonable hypothesis is that a warmer climate will cause snowfall to become more dense (i.e. wetter and heavier), possibly leading to less wind redistribution and thus produce a more uniformly distributed snowpack across the landscape. In this study, we investigate the role of increasingly uniform spatial snowpack distributions on streamflow generation in the Green Lakes Valley Niwot Ridge Long Term Ecological Research station, within the headwaters of the Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation experiments driven by reconstructed snowpacks spanning 2001–2014 show that more a more uniform spatial snowpack distribution leads to an earlier melt-out of 31 days on average and tends to produce less total streamflow, with maximum decreases as large as 7.5%. Isolating the role of snowpack heterogeneity from melt-season precipitation, we find that snowpack uniformity reduces total streamflow by as much as 13.2%. Reductions in streamflow are largely explained by greater exposure to solar radiation in the uniformly distributed case relative to a more heterogeneous snowpack, with this exposure driving shifts towards earlier snowmelt and changes in soil water storage. Overall, we find that the runoff efficiency from shallower snowpacks is more sensitive to the effects of uniformity than deeper snowpacks, which has potential implications for a warming climate where shallower snowpacks and enhanced sensitivities may be present.  相似文献   
592.
Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.  相似文献   
593.
This paper describes surface hydrometeorological and spectral datasets collected from two tower sites located in the University of Melbourne's Dookie experimental farm, Victoria, Australia. The datasets were collected from different vegetation types including wheat, canola, and grazed pasture during the 2012, 2013, and 2014 cropping seasons. The dataset includes 30‐min frequency latent and sensible heat flux measurements and layer‐average soil moisture data at profile depths of 0–5, 0–30, 30–60, 60–90, and 90–120 cm. Air temperature, wind speed, wind direction, relative humidity, precipitation, and incoming and outgoing longwave and shortwave radiation data were also collected from two locations in the study area. The dataset described in this paper is available online.  相似文献   
594.
Radiocarbon-dated sediment cores from subalpine lakes were used to investigate post-glacial dust deposition in the Uinta Mountains (Utah, USA). Lake sediments were geochemically characterized with ICP-OES, ICP-MS and XRF core scanning. Collections from passive samplers constrain the properties of modern dust, and samples of regolith constrain properties of the local material within the watershed. Ca and Eu are more abundant in dust, whereas Ti and Zr are more abundant in local regolith. As a result, the Ca/Ti and Eu/Zr ratios are indices for the dust content of lake sediment. In all records, the dust index rises in the early Holocene as watersheds became stabilized with vegetation, reducing the influx of local material. After this point, values remained above average through the middle Holocene, consistent with an increased dust content in the sediment. Dust index values drop in the late Holocene in most lakes, suggesting a decrease in dust abundance. Generally synchronous shifts in dust index values in cores from lakes in different parts of this mountain range are evidence of enhanced dust deposition in this region during the middle Holocene, and are consistent with a variety of records for increased aridity in the south-western USA at this time.  相似文献   
595.
Here we investigate the use of optically stimulated luminescence (OSL) for dating cobbles from the body of successive beach ridges and compare cobble surface‐derived ages to standard quartz OSL ages from sand. Between four and eight cobbles and sand samples (age control) were dated with the luminescence method, taken from the modern beach and from beach ridges on the south and north extremes of a prograding spit on the westernmost coast of Lolland, Denmark. Luminescence‐depth profiles perpendicular to the surfaces of the cobbles show that the feldspar infrared signals stimulated at 50 °C were fully reset to various depths into the cobbles prior to final deposition; as a result, the equivalent doses determined from close to the surface of such cobbles can be used to calculate burial ages. Beach‐ridge burial ages given by the average of ages of individual cobbles taken from the same site are consistent, within errors, with the ages derived from the sand samples. Cobble‐ and sand‐derived ages show that the southernmost beach ridge at Albuen was formed around 2 ka ago, indicating that this sandy spit is younger than other coastal systems in Denmark. The agreement between ages derived from clasts and from standard quartz OSL in this study confirms that, even in the absence of sandy sediments, we can reliably date sites using OSL by targeting larger clasts. In addition, the record of prior light exposure contained in the shape of the cobbles’ luminescence‐depth profile removes one of the major uncertainties (i.e. the degree of signal reset prior to burial) in the luminescence dating of high latitude sites.  相似文献   
596.
The exchanges of water, energy and carbon between the land surface and the atmosphere are tightly coupled, so that errors in simulating evapotranspiration lead to errors in simulating both the water and carbon balances. Areas with seasonally frozen soils present a particular challenge due to the snowmelt-dominated hydrology and the impact of soil freezing on the soil hydraulic properties and plant root water uptake. Land surface schemes that have been applied in high latitudes often have reported problems with simulating the snowpack and runoff. Models applied at the Boreal Ecosystem Research and Monitoring Sites in central Saskatchewan have consistently over-predicted evapotranspiration as compared with flux tower estimates. We assessed the performance of two Canadian land surface schemes (CLASS and CLASS-CTEM) for simulating point-scale evapotranspiration at an instrumented jack pine sandy upland site in the southern edge of the boreal forest in Saskatchewan, Canada. Consistent with past reported results, these models over-predicted evapotranspiration, as compared with flux tower observations, but only in the spring period. Looking systematically at soil properties and vegetation characteristics, we found that the dominant control on evapotranspiration within these models was the canopy conductance. However, the problem of excessive spring ET could not be solved satisfactorily by changing the soil or vegetation parameters. The model overestimation of spring ET coincided with the overestimation of spring soil liquid water content. Improved algorithms for the infiltration of snowmelt into frozen soils and plant-water uptake during the snowmelt and soil thaw periods may be key to addressing the biases in spring ET.  相似文献   
597.
598.
In this contribution, we highlight the importance of in-situ monazite geochronology linked to P−T modelling for identification of timescales of metamorphic processes. Barrovian-type micaschists, migmatites and augengneiss from the Gumburanjun dome in the southeastern extremity of the Gianbul dome, NW Himalaya, have been studied in order to correlate the early stages of Himalayan metamorphism at different crustal levels and infer the timing of anatexis. P−T−t paths are constrained through combined pseudosection modelling and in-situ and in-mount monazite and xenotime laser ablation–split-stream inductively coupled plasma-mass spectrometry. Petrography and garnet zoning combined with pseudosection modelling show that garnet-staurolite schists record burial from ~530 to 560°C and 5.5 kbar to ~630 to 660°C and 7 kbar; staurolite-kyanite schists from ~530 to 560°C and 5 kbar to ~670 to 680°C and 7−9 kbar; and garnet-kyanite migmatites from 540−570°C and 5 kbar to ~680 to 750°C and 7−10 kbar, probably also to >750°C and >9 kbar above the muscovite stability field. The decompression paths of garnet-staurolite schists indicate cooling on decompression, while garnet rim chemistry and local sillimanite growth point to a stage of re-equilibration at ~600 to 670°C and 4−6 kbar in some of the staurolite-kyanite schists, and at ~670 to 700°C and 6 kbar in garnet-kyanite migmatites. Some of the staurolite-kyanite schists and garnet-kyanite migmatites also contain andalusite or andalusite-cordierite. Monazite and xenotime were analysed in thin sections in garnet, staurolite and kyanite, and in the matrix; and in mounts. BSE images and compositional maps of monazite (xenotime was too small) show variable internal structures from homogeneous through patchy zoning with embayed to sharp boundaries. Two groups of samples can be identified on the basis of the presence or absence of c. 44 − 37 Ma ages. The first group of samples—two garnet-staurolite schists—recorded only c. 31 − 27 Ma ages in porphyroblasts and no c. 40 Ma ages. The second group (samples of staurolite-kyanite schist, garnet-kyanite migmatites, augengneiss) have both the older, c. 44 − 37 Ma monazite ages in porphyroblasts and younger ages down to c. 22 Ma. These significantly different ranges of ages from porphyroblasts of 44−37 Ma, and 31−27 Ma, are interpreted as the duration of prograde P−T paths in Eocene and Oligocene, and indicate diachronous two-stage burial of rocks. Early migmatization occurred at 38 Ma. The c. 29 Ma is interpreted as the time when rocks from the lower and middle crustal levels were partially exhumed and came in to contact with rocks that were downgoing at this time. Localized monazite recrystallization is as young as 26−24 Ma. The youngest ages of 23−22 Ma are related to leucogranite emplacement.  相似文献   
599.
600.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号