首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37308篇
  免费   262篇
  国内免费   219篇
测绘学   723篇
大气科学   1722篇
地球物理   7090篇
地质学   14679篇
海洋学   3536篇
天文学   8825篇
综合类   100篇
自然地理   1114篇
  2022年   489篇
  2021年   712篇
  2020年   759篇
  2019年   833篇
  2018年   1703篇
  2017年   1549篇
  2016年   1645篇
  2015年   621篇
  2014年   1421篇
  2013年   2044篇
  2012年   1627篇
  2011年   1905篇
  2010年   1796篇
  2009年   1997篇
  2008年   1772篇
  2007年   1986篇
  2006年   1741篇
  2005年   909篇
  2004年   820篇
  2003年   817篇
  2002年   746篇
  2001年   767篇
  2000年   634篇
  1999年   418篇
  1998年   442篇
  1997年   475篇
  1996年   339篇
  1995年   358篇
  1994年   335篇
  1993年   281篇
  1992年   285篇
  1991年   290篇
  1990年   337篇
  1989年   272篇
  1988年   259篇
  1987年   260篇
  1986年   191篇
  1985年   302篇
  1984年   302篇
  1983年   295篇
  1982年   274篇
  1981年   248篇
  1980年   267篇
  1979年   203篇
  1978年   242篇
  1977年   204篇
  1976年   177篇
  1975年   184篇
  1974年   171篇
  1973年   206篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Spectral features of plant species in the visible to SWIR (0.4–2.5 μm) region have been studied extensively, but scanty attention has been given to plant thermal infrared (TIR: 4–14 μm) properties. This paper presents preliminary results of a study that was conducted first time in India to measure radiance and emissivity properties of eight plant species in TIR spectral region in the field conditions using a FTIR (Fourier Transform Infrared) field spectroradiometer working in 4–14 μm at an agriculture experimental farm. Several spectral features in the emissivity spectra of plant species were observed that are probably related to the leaf chemical constituents, such as cellulose and xylan (hemicellulose) and structural aspects of leaf surface like abundance of trichomes and texture. Observations and results from the field measurements were supported by the laboratory measurements like biochemical analysis. These preliminary field emissivity measurements of leaves in TIR show that there is useful spectral information that may be detectable by field-based instrument. More detailed field and laboratory measurements are underway to explore this research theme.  相似文献   
122.
Snow cover is an important variable for climatic and hydrologic models due to its effects on surface albedo, energy, and moisture budgets. Passive microwave sensors can be used to monitor temporal and spatial variations in large-scale snow cover parameters, avoiding problems of cloud cover and polar nights. In the present study, brightness temperature values were estimated (using calibration curves) for moist snow on natural and blackbody/metal surface. TB response on snow depth, density, SWE and angular variation from nadir were measured and found that TB decreases with increase of snow depth and with increase of angle from nadir. Empirical relations were used to estimate emissivity, dielectric constant and dielectric loss factor. It was observed that emissivity decreases with the increase of dielectric constant. The dielectric constant and dielectric loss factor both increases with the increase of density. Experiments were performed during winter of year 2005 at Dhundi and Solang (H.P.), India, using ground based passive microwave radiometer having 6.9 and 18.7 GHz antenna frequencies at dual polarization.  相似文献   
123.
124.
High-dimensional image data open new possibilities in remote sensing digital image classification, particularly when dealing with classes that are spectrally very similar. The main problem refers to the estimation of a large number of classifier's parameters. One possible solution to this problem consists in reducing the dimensionality of the original data without a significant loss of information. In this letter, a new approach to reduce data dimensionality is proposed. In the proposed methodology, each pixel's curve of spectral response is initially segmented, and the digital numbers (DNs) at each segment are replaced by a smaller number of statistics. In this letter, the proposed statistics are the mean and variance of the segment's DNs, which are supposed to carry information about the segment's position and shape, respectively. Tests were performed by using Airborne Visible/Infrared Imaging Spectrometer hyperspectral image data. The experiments have shown that this methodology is capable of providing very acceptable results, in addition of being computationally efficient  相似文献   
125.
126.
The Nisyros Volcano (Greece) was monitored by satellite and ground thermal imaging during the period 2000–2002. Three night-scheduled Landsat-7 ETM+ thermal (band 6) images of Nisyros Island were processed to obtain land surface temperature. Ground temperature data were also collected during one of the satellite overpasses. Processed results involving orthorectification and 3-D atmospheric correction clearly show the existence of a thermal anomaly inside the Nisyros Caldera. This anomaly is associated mainly with the largest hydrothermal craters and has land surface temperatures 5–10 °C warmer than its surroundings. The ground temperature generally increased by about 4 °C inside the main crater over the period 2000–2002. Ground thermal images of the hydrothermal Stephanos Crater were also collected in 2002 using a portable thermal infrared camera. These images were calibrated to ground temperature data and orthorectified. A difference of about 0–2 °C was observed between the ground thermal images and the ground temperature data. The overall study demonstrates that satellite remote sensing of low-temperature fumarolic fields within calderas can provide a reliable long-term monitoring tool of dormant volcanoes that have the potential to reactivate. Similarly, a portable thermo-imager can easily be deployed for real-time monitoring using telemetric data transfer. The operational costs for both systems are relatively low for an early warning system.  相似文献   
127.
Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants.  相似文献   
128.
A PC-based interactive software has been developed and presented here for validating geophysical data retrieved from satellite mounted sensors operating in visible, infrared and microwave frequencies. The program, coded in Visual Basic, is user interactive and runs on Windows-98 or higher platforms. The system prepares the database on a pre-selected Microsoft platform to enhance processing efficiency. Sub-setting option is also provided to reduce the processing time. Data retrieved from ‘Multi-channel Scanning Microwave Radiometer (MSMR) onboard the Indian satellites Oceansat-1 during 1999–2001 were validated using this software as a case study. The program has several added advantages over the conventional method of validation that involves strenuous efforts to incorporate subroutines to meet every minute requirement. Satellite-sea truth relationships on various space-time window combinations are determined and exhibited in matrix form to visualize the nature of correlation. User has the option to visualize the satellite-sea truth relationship through graphical representations before selecting optimum relationship for prediction.  相似文献   
129.
Estimation and monitoring of crop evapotranspiration (ETc) or consumptive water use over large-area holds the key to irrigation management plans and regional drought preparedness. The objective of this study was to estimate ETc by applying the simplified-surface energy balance index (S-SEBI) model to Landsat-8 data for the 2014–2015 period in parts of North India. An average ETc was estimated 2.72 and 2.47 in mm day?1 with 0.22, 0.18 standard deviation and 0.11, 0.07 standard error for Kharif and Rabi crops, respectively. On validation part, a close relationship was observed between S-SEBI derived and scintillometer observed evaporative fraction with 0.85 correlation coefficient and 0.86 agreement index. The statistical analysis also endorses the results accuracy and reliability with 0.026 and 0.602, relative root-mean square errors and model efficiency for wheat crop, respectively. The study showed that normalized difference vegetation index and LST are closely related and serve as a proxy for qualitative representation of ETc.  相似文献   
130.
In the past researchers have suggested hard classification approaches for pure pixel remote sensing data and to handle mixed pixels soft classification approaches have been studied for land cover mapping. In this research work, while selecting fuzzy c-means (FCM) as a base soft classifier entropy parameter has been added. For this research work Resourcesat-1 (IRS-P6) datasets from AWIFS, LISSIII and LISS-IV sensors of same date have been used. AWIFS and LISS-III datasets have been used for classification and LISS-III and LISS-IV data were used for reference data generation, respectively. Soft classified outputs from entropy based FCM classifiers for AWIFS and LISS-III datasets have been evaluated using sub-pixel confusion uncertainty matrix (SCM). It has been observed that output from FCM classifier has higher classification accuracy with higher uncertainty but entropy-based classifier with optimum value of regularizing parameter generates classified output with minimum uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号