首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   74篇
  国内免费   18篇
测绘学   26篇
大气科学   92篇
地球物理   313篇
地质学   382篇
海洋学   69篇
天文学   190篇
综合类   9篇
自然地理   72篇
  2023年   4篇
  2022年   11篇
  2021年   16篇
  2020年   35篇
  2019年   35篇
  2018年   56篇
  2017年   76篇
  2016年   59篇
  2015年   54篇
  2014年   61篇
  2013年   67篇
  2012年   54篇
  2011年   71篇
  2010年   57篇
  2009年   53篇
  2008年   65篇
  2007年   49篇
  2006年   51篇
  2005年   41篇
  2004年   40篇
  2003年   41篇
  2002年   27篇
  2001年   15篇
  2000年   13篇
  1999年   14篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
排序方式: 共有1153条查询结果,搜索用时 15 毫秒
61.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
62.
A visual basic spreadsheet macro for geochemical background analysis   总被引:3,自引:0,他引:3  
Nakić Z  Posavec K  Bacani A 《Ground water》2007,45(5):642-647
A Visual Basic macro entitled BACKGROUND calculates geochemical background values of chemical parameters and estimates threshold values separating background data from anomalies. The macro uses two statistical methods, the iterative 2-sigma technique and the calculated distribution function, and integrates these model-based objective methods into a widely accessible platform (i.e., MS Excel). The macro offers the possibility for automated processing of geochemical data and enables an automated generation of background range and threshold values for chemical parameters.  相似文献   
63.
The purpose of this research was to study the complexity of the energization of the ring current during a geomagnetic storm, produced during southern Bz(IMF) by the injection of plasma sheet ions, accelerated by enhanced convective electric fields. This model assumes that the plasma sheet is continuously populated by H+ from the sun and the ionosphere, and sporadically by ionospheric O+, making the ring current a coupled system whose energy can hardly be expressed analytically. When Bz(IMF) turns north, the ring current becomes uncoupled, and the energy decays exponentially if the storm is weak, or can be expressed as a combination of exponentials during strong storms representing the quick decay of O+ and the slower decay of H+, as has been shown.  相似文献   
64.
Considering food web energetics and elemental cycling together allows the testing of hypotheses about the coevolution of biological systems and their physical environment. We investigated the energy flow and the distribution of 25 elements in the Steina River.¶We constructed an annual energy flow network and estimated the emergy ("embodied energy" that includes all the energy involved in a process) contributions of resources sustaining the system. Furthermore, we measured the concentration of various macronutrients, essential elements, and heavy metals in the physical environment and trophic compartments. Finally, we examined the hypothesis of a positive relationship between the "rarity" of an element and its tendency to bioaccumulate. To do so, we used transformity, the relative energy input required to sustain a compartment's net production or the concentration differential of an element between the living community and the physical environment.¶The resulting energy flow network is one of the most complete available for streams. In the Steina, over 99% of the energy input is transported through the system without being processed. Dissolved inorganic matter and sunlight are the largest inputs, but uptake efficiency is much higher for dissolved and particulate organic matter. Transformities of trophic compartments and elements span 6 to 7 orders of magnitude.¶The tendency to bioaccumulate was as predicted for most elements, with macronutrients showing no accumulation and heavy elements accumulating in high-transformity compartments. However, Na and K were found at highest concentrations in consumers, and Pb, Ga, and Cd in algae. Improved estimates may become possible as more knowledge is available on ecosystem flows. We suggest further ways of testing hypotheses about strategies of element processing.  相似文献   
65.
[Cu2+] and Cu complexation parameters in some selected freshwater systems in Switzerland were determined by the technique of ligand-exchange and DPCSV. Results from the water columns of some eutrophic and oligotrophic lakes are presented and compared to small acid lakes. Cu is strongly complexed by organic ligands which with very high stability constants at low concentrations are probably biologically produced, as indicated by the seasonal variations in the eutrophic lakes and by the relationship between Cu complexation and algal activity in the eutrophic (pCu=15–16), oligotrophic (pCu=13–14) and acidic (pCu=9–10) lakes. The extent of Cu complexation in river waters was generally lower than in the eutrophic lakes, at similar DOC levels. No obvious correlation between Cu complexation and DOC was observed, indicating that Cu complexing ligands are specific organic compounds.  相似文献   
66.
67.
68.
69.
Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from <2?km depth, where ambient temperatures are ?100°C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2?C10?mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200?C300???m-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These ??clast-cortex grains?? closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are systematically inclined in the direction of shear. We suggest that fluidization of ultracataclastic sub-layers and formation of clast-cortex grains within the principal slip zone occurred at high strain rates during propagation of seismic ruptures whereas development of an overprinting CPO occurred by intergranular pressure solution during post-seismic creep. Further work is required to document the range of microstructures in localized slip zones that cross-cut different lithologies, and to compare natural slip zone microstructures with those produced in controlled deformation experiments.  相似文献   
70.
GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. It is one of the featured high-performance applications of the NASA QuakeSim project. The program is targeted to be compiled and run on UNIX systems, and is running on diverse systems including sequential and message-passing parallel systems. Solution to the elliptical partial differential equations is obtained by finite element basis sampling, resulting in a sparse linear system primarily solved by conjugate gradient iteration to a tolerance level; on sequential systems a Crout factorization for the direct inversion of the linear system is also supported. The physics models supported include isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via implicit quasi-static time stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral continuum elements, GeoFEST supports split-node faulting, body forces, and surface tractions. This software and related mesh refinement strategies have been validated on a variety of test cases with rigorous comparison to analytical solutions. These include a box-shaped domain with imposed motion on one surface, a pair of strike slip faults in stepover arrangement, and two community-agreed benchmark cases: a strike slip fault in an enclosing box, and a quarter-domain circular fault problem. Scientific applications of the code include the modeling of static and transient co- and post-seismic earth deformation, Earth response to glacial, atmospheric and hydrological loading, and other scenarios involving the bulk deformation of geologic media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号