首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   86篇
  国内免费   18篇
测绘学   20篇
大气科学   94篇
地球物理   315篇
地质学   390篇
海洋学   74篇
天文学   202篇
综合类   9篇
自然地理   73篇
  2023年   4篇
  2022年   11篇
  2021年   18篇
  2020年   37篇
  2019年   36篇
  2018年   60篇
  2017年   77篇
  2016年   62篇
  2015年   56篇
  2014年   59篇
  2013年   71篇
  2012年   54篇
  2011年   73篇
  2010年   60篇
  2009年   55篇
  2008年   65篇
  2007年   48篇
  2006年   50篇
  2005年   42篇
  2004年   40篇
  2003年   41篇
  2002年   27篇
  2001年   15篇
  2000年   15篇
  1999年   14篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   10篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有1177条查询结果,搜索用时 15 毫秒
231.
GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. It is one of the featured high-performance applications of the NASA QuakeSim project. The program is targeted to be compiled and run on UNIX systems, and is running on diverse systems including sequential and message-passing parallel systems. Solution to the elliptical partial differential equations is obtained by finite element basis sampling, resulting in a sparse linear system primarily solved by conjugate gradient iteration to a tolerance level; on sequential systems a Crout factorization for the direct inversion of the linear system is also supported. The physics models supported include isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via implicit quasi-static time stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral continuum elements, GeoFEST supports split-node faulting, body forces, and surface tractions. This software and related mesh refinement strategies have been validated on a variety of test cases with rigorous comparison to analytical solutions. These include a box-shaped domain with imposed motion on one surface, a pair of strike slip faults in stepover arrangement, and two community-agreed benchmark cases: a strike slip fault in an enclosing box, and a quarter-domain circular fault problem. Scientific applications of the code include the modeling of static and transient co- and post-seismic earth deformation, Earth response to glacial, atmospheric and hydrological loading, and other scenarios involving the bulk deformation of geologic media.  相似文献   
232.
Tafoni are a type of cavernous weathering widespread around the world. Despite the extensive distribution of the tafoni, their genesis is not clear and is still a matter of debate, also because they occur in such different climatic conditions and on so many different types of substrate. Geomorphological characterization of more than 60 tafoni in three different Antarctic sites (two coastal and one inland) between 74 and 76° S with sampling of weathering products and salt occurrences are described together with thermal data (on different surfaces) and wind speed recorded in different periods of the year in a selected tafone close to the Italian Antarctic station. The aim of this present study is to provide further information to help understand the processes involved in the growth of tafoni in a cryotic environment, and the relationship of these processes to climate, with particular attention to the thermal regime and the role of wind. The new data presented in this paper suggest that there is no single key factor that drives the tafoni development, although thermal stress seems the most efficient process, particularly if we consider the short‐term fluctuations. The data also confirm that other thermal processes, such as freezing–thawing cycles and thermal shock, are not really effective for the development of tafoni in this area. The wind speed measured within the tafoni is half that recorded outside, thus favouring snow accumulation within the tafoni and therefore promoting salt crystallization. On the other hand, the wind effect on the thermal regime within the tafoni seems negligible. While both salt weathering and thermal stress appear active in this cryotic environment, these are azonal processes and are therefore active in other climatic areas where tafoni are widespread (such as the Mediterranean region). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
233.
Granular disintegration has long been recognized and referred to in weathering texts from all environments, including the Antarctic. Despite this universal identification and referral, few to no data exist regarding thermal conditions at this scale and causative mechanisms remain little more than conjecture. Here, as part of a larger weathering study, thermal data of individual grains (using infrared thermometry and ultra‐fine thermocouples) composing a coarse granite, as well as the thermal gradients in the outer 10 cm (using thermistors), were collected from a north‐facing exposure. Measurements were also made regarding the surface roughness of the rock. Based on recorded temperatures, the nature of the rock surface and the properties of the minerals, an argument is made for complex stress fields that lead to granular disintegration. Mineral to mineral temperature differences found to occur were, in part, due to the changing exposure to solar radiation through the day (and through seasons). Because the thermal conductivity and the coefficient of thermal expansion of quartz are not equal in all directions, coupled with the vagaries of heating, this leads to inter‐granular stresses. Although fracture toughness increases with a decrease in temperature, it is suggested that the tensile forces resulting from falling temperatures are able to exceed this and produce granular disassociation. The lack of equality with respect to crystal axis of both thermal conductivity and expansion in quartz further exacerbates the propensity to failure. Grain size and porosity also influence the thermal stresses and may help explain why some grains are held in place despite disassociation near the surface. While the data presented here appear to beg more questions than providing answers, they do provide a basis for better, more detailed studies of this important weathering scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
234.
A hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the exchanges at the inlets of the Venice Lagoon, a complex morphological area connecting the sea and the lagoon. The model solves the shallow water equations on a spatial domain discretized by a staggered finite element grid. The grid represents the Adriatic Sea and the Venice Lagoon with different spatial resolutions varying from 30 m for the smallest channels of the lagoon to 30  km for the inner areas of the central Adriatic Sea. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. After the calibration, the tidal wave propagation in the North Adriatic and in the Venice Lagoon is well reproduced by the model. To validate the model results, empirical flux data measured by acoustic Doppler current profiler probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modeled and measured fluxes at the inlets outlines the efficiency of the model to reproduce both tide- and wind-induced water exchanges between the sea and the lagoon. Even in complex areas, where highly varying resolution is needed, the model is suitable for the simulation of the dominating physical processes.  相似文献   
235.
Determination of annual lamination provides important additional constraints to radiometric dates on speleothems, both for dating the duration of specific growth intervals and optimizing growth models. In the absence of visible laminae, however, speleothem age models are reliant upon curve fitting through discretely dated points and are therefore inherently more uncertain than annual chronologies from laminae. Given that the impact of seasonality on speleothems is expected to be strong enough to generate an annual pulse in trace element chemistry regardless of whether or not visible or fluorescent growth laminae are visible, we demonstrate the potential for deriving high-resolution stalagmite chronologies from non-laminated samples using annual chemical variations in stalagmites from two Alpine caves (Obir, Austria and Ernesto, NE Italy). Trace element data were obtained by ion microprobe analyses for H, P, Mg, Na, Sr and Ba and the annual signal was sought using spectral and wavelet analysis. An automated chemical peak-counting software tool was developed in MATLAB©. It counts significant annual peaks using criteria of minimum amplitude in relation to the local standard deviation of signal variation and minimum separation between peaks determined by the thickness of the preceding layers. Verification of the tool using visibly laminated samples suggests the software is a reliable and accurate method of chronology building, with hit ratios greater than 0.93 and less than 0.75% false alarm occurrences. Used in conjunction with other dating methods such as radiocarbon, U–Th and sulphur peak dating, the automated chemical laminae chronology-building approach provides a more meaningful alternative to simple age-depth curve fitting for non-laminated samples.  相似文献   
236.
Experiments ranging from 2 to 3 GPa and 800 to 1300 °C and at 0.15 GPa and 770 °C were performed to investigate the stability and mutual solubility of the K2ZrSi3O9 (wadeite) and K2TiSi3O9 cyclosilicates under upper mantle conditions. The K2ZrSi3O9–K2TiSi3O9 join exhibits complete miscibility in the P–T interval investigated. With increasing degree of melting the solid solution becomes progressively enriched in Zr, indicating that K2ZrSi3O9 is the more refractory end member. At 2 GPa, in the more complex K2ZrSi3O9–K2TiSi3O9–K2Mg6Al2Si6O20(OH)4 system, the presence of phlogopite clearly limits the extent of solid solution of the cyclosilicate to more Zr-rich compositions [Zr/(Zr + Ti) > 0.85], comparable to wadeite found in nature, with TiO2 partitioning strongly into the coexisting mica and/or liquid. However, at 1200 °C, with increasing pressure from 2 to 3 GPa, the partitioning behaviour of TiO2 changes in favour of the cyclosilicate, with Zr/(Zr + Ti) of the K2(Zr,Ti)Si3O9 phase decreasing from ∼0.9 to ∼0.6. The variation in the Ti content of the coexisting phlogopite is related to its degree of melting to forsterite and liquid, following the major substitution VITi+VI□=2VIMg. Received: 26 January 1999 / Accepted: 10 January 2000  相似文献   
237.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   
238.
Increased interest in the fractionation of Sn isotopes has led to the development of several techniques for preparing cassiterite (SnO2, the primary ore of Sn) for isotopic analysis. Two distinct methods have been applied in recent isotopic studies of cassiterite: (a) reduction to tin metal with potassium cyanide (KCN) at high temperature (800 °C), with subsequent dissolution in HCl, and (b) reduction to a Sn solution with hydriodic acid (HI) at low temperature (100 °C). This study compares the effectiveness and accuracy of these two methods and contributes additional methodological details. The KCN method consistently yielded more Sn (> 70% in comparison with < 5%), does not appear to fractionate Sn isotopes at high temperatures over a 2‐hour period and produced consistent Sn isotope values at flux mass ratios of ≥ 4:1 (flux to mineral) with a minimum reduction time of 40 min. By means of a distillation experiment, it was demonstrated that HI could volatilise Sn, explaining the consistently low yields by this method. Furthermore, the distillation generated Sn vapour, which is up to 0.38‰ per mass unit different from the starting material, the largest induced Sn fractionation reported to date. Accordingly, the HI method is not recommended for cassiterite preparation for Sn isotopic analysis.  相似文献   
239.
A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of vegetation. Several high-resolution GVF products, derived from high-quality satellite retrievals from Moderate Resolution Imaging Spectroradiometer images, were produced and their performance was evaluated in long-term WRF simulations. The atmospheric conditions during the 2006 heat wave year over Europe were simulated since significant interannual variability in vegetation seasonality was found. Such interannual variability is expected to increase in the coming decades due to climatic changes. The simulation using a quadratic normalized difference vegetation index to GVF relationship resulted in consistent improvements of modeled temperatures. The model mean temperature cold bias was reduced by 10 % for the whole domain and by 20–45 % in areas affected by the heat wave. The study shows that WRF simulations during heat waves and droughts, when vegetation conditions deviate from the climatology, require concurrent land surface properties in order to produce accurate results.  相似文献   
240.
We present an assessment of the potential impacts of climate change on hydropower production within a paradigmatic, very highly exploited cryospheric area of upper Valtellina valley in the Italian Alps. Based on dependable and unique hydrological measures from our high‐altitude hydrometric network Idrostelvio during 2006–2015, we set up the Poly‐Hydro model to mimic the cryospheric processes driving hydrological flow formation in this high‐altitude area. We then set up an optimization tool, which we call Poly‐Power, to maximize the revenue of the plant manager under given hydrological regimes, namely, by proper operation of the hydroelectric production scheme (reservoirs, pipelines, and power plants) of the area. We then pursue hydrological projections until 2100, feeding Poly‐Hydro with the downscaled outputs of three general circulation models from the Intergovernmental Panel on Climate Change Fifth Assessment Report, under the scenarios Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and RCP 8.5. We assess hydrological flows in two reference decades, that is, at half century (2040–2049), and end of century (2090–2099). We then feed the so obtained hydrological scenarios as inputs to Poly‐Power, and we project future production of hydroelectric power, with and without reoperation of the system. The average annual stream flows for hydropower production decreases along the century under our scenarios (?21 to +7%, on average ? 5% at half century; ?17 to ?2%, average ? 8%, end of century), with ice cover melting unable to offset such decrease. Reduction in snowfall and increase in liquid rainfall are the main factors affecting the modified hydrological regime. Energy production (and revenues) at half century may increase under our scenarios (?9 to +15%, +3% on average). At the end of century in spite of a projected increase on average (?7 to +6%, +1% on average), under the warmest scenario RCP 8.5 decrease of energy production is consistently projected (?4% on average). Our results provide an array of potential scenarios of modified hydropower production under future climate change and may be used for brain storming of adaptation strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号