首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1101篇
  免费   88篇
  国内免费   18篇
测绘学   21篇
大气科学   97篇
地球物理   317篇
地质学   415篇
海洋学   70篇
天文学   203篇
综合类   9篇
自然地理   75篇
  2023年   6篇
  2022年   11篇
  2021年   16篇
  2020年   35篇
  2019年   36篇
  2018年   55篇
  2017年   76篇
  2016年   61篇
  2015年   55篇
  2014年   63篇
  2013年   69篇
  2012年   56篇
  2011年   74篇
  2010年   57篇
  2009年   56篇
  2008年   70篇
  2007年   49篇
  2006年   53篇
  2005年   45篇
  2004年   41篇
  2003年   42篇
  2002年   30篇
  2001年   16篇
  2000年   16篇
  1999年   17篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   10篇
  1992年   6篇
  1991年   3篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有1207条查询结果,搜索用时 15 毫秒
231.
The fault weakening occurring during an earthquake and the temporal evolution of the traction on a seismogenic fault depend on several physical mechanisms, potentially concurrent and interacting. Recent laboratory experiments and geological field observations of natural faults revealed the presence, and sometime the coexistence, of thermally activated processes (such as thermal pressurization of pore fluids, melting of gouge and rocks, material property changes, thermally-induced chemical environment evolution), elasto-dynamic lubrication, porosity and permeability evolution, gouge fragmentation and wear, etc. In this paper, by reviewing in a unifying sketch all possible chemico–physical mechanisms that can affect the traction evolution, we suggest how they can be incorporated in a realistic fault governing equation. We will also show that simplified theoretical models that idealistically neglect these phenomena appear to be inadequate to describe as realistically as possible the details of breakdown process (i.e., the stress release) and the consequent high frequency seismic wave radiation. Quantitative estimates show that in most cases the incorporation of such nonlinear phenomena has significant, often dramatic, effects on the fault weakening and on the dynamic rupture propagation. The range of variability of the value of some parameters, the uncertainties in the relative weight of the various competing mechanisms, and the difference in their characteristic length and time scales sometime indicate that the formulation of a realistic governing law still requires joint efforts from theoretical models, laboratory experiments and field observations.  相似文献   
232.
The critical parameters that influence the nonlinear seismic response of asymmetric‐plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric‐plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric‐plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric‐plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
233.
GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. It is one of the featured high-performance applications of the NASA QuakeSim project. The program is targeted to be compiled and run on UNIX systems, and is running on diverse systems including sequential and message-passing parallel systems. Solution to the elliptical partial differential equations is obtained by finite element basis sampling, resulting in a sparse linear system primarily solved by conjugate gradient iteration to a tolerance level; on sequential systems a Crout factorization for the direct inversion of the linear system is also supported. The physics models supported include isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via implicit quasi-static time stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral continuum elements, GeoFEST supports split-node faulting, body forces, and surface tractions. This software and related mesh refinement strategies have been validated on a variety of test cases with rigorous comparison to analytical solutions. These include a box-shaped domain with imposed motion on one surface, a pair of strike slip faults in stepover arrangement, and two community-agreed benchmark cases: a strike slip fault in an enclosing box, and a quarter-domain circular fault problem. Scientific applications of the code include the modeling of static and transient co- and post-seismic earth deformation, Earth response to glacial, atmospheric and hydrological loading, and other scenarios involving the bulk deformation of geologic media.  相似文献   
234.
Tafoni are a type of cavernous weathering widespread around the world. Despite the extensive distribution of the tafoni, their genesis is not clear and is still a matter of debate, also because they occur in such different climatic conditions and on so many different types of substrate. Geomorphological characterization of more than 60 tafoni in three different Antarctic sites (two coastal and one inland) between 74 and 76° S with sampling of weathering products and salt occurrences are described together with thermal data (on different surfaces) and wind speed recorded in different periods of the year in a selected tafone close to the Italian Antarctic station. The aim of this present study is to provide further information to help understand the processes involved in the growth of tafoni in a cryotic environment, and the relationship of these processes to climate, with particular attention to the thermal regime and the role of wind. The new data presented in this paper suggest that there is no single key factor that drives the tafoni development, although thermal stress seems the most efficient process, particularly if we consider the short‐term fluctuations. The data also confirm that other thermal processes, such as freezing–thawing cycles and thermal shock, are not really effective for the development of tafoni in this area. The wind speed measured within the tafoni is half that recorded outside, thus favouring snow accumulation within the tafoni and therefore promoting salt crystallization. On the other hand, the wind effect on the thermal regime within the tafoni seems negligible. While both salt weathering and thermal stress appear active in this cryotic environment, these are azonal processes and are therefore active in other climatic areas where tafoni are widespread (such as the Mediterranean region). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
235.
Granular disintegration has long been recognized and referred to in weathering texts from all environments, including the Antarctic. Despite this universal identification and referral, few to no data exist regarding thermal conditions at this scale and causative mechanisms remain little more than conjecture. Here, as part of a larger weathering study, thermal data of individual grains (using infrared thermometry and ultra‐fine thermocouples) composing a coarse granite, as well as the thermal gradients in the outer 10 cm (using thermistors), were collected from a north‐facing exposure. Measurements were also made regarding the surface roughness of the rock. Based on recorded temperatures, the nature of the rock surface and the properties of the minerals, an argument is made for complex stress fields that lead to granular disintegration. Mineral to mineral temperature differences found to occur were, in part, due to the changing exposure to solar radiation through the day (and through seasons). Because the thermal conductivity and the coefficient of thermal expansion of quartz are not equal in all directions, coupled with the vagaries of heating, this leads to inter‐granular stresses. Although fracture toughness increases with a decrease in temperature, it is suggested that the tensile forces resulting from falling temperatures are able to exceed this and produce granular disassociation. The lack of equality with respect to crystal axis of both thermal conductivity and expansion in quartz further exacerbates the propensity to failure. Grain size and porosity also influence the thermal stresses and may help explain why some grains are held in place despite disassociation near the surface. While the data presented here appear to beg more questions than providing answers, they do provide a basis for better, more detailed studies of this important weathering scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
236.
A hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the exchanges at the inlets of the Venice Lagoon, a complex morphological area connecting the sea and the lagoon. The model solves the shallow water equations on a spatial domain discretized by a staggered finite element grid. The grid represents the Adriatic Sea and the Venice Lagoon with different spatial resolutions varying from 30 m for the smallest channels of the lagoon to 30  km for the inner areas of the central Adriatic Sea. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. After the calibration, the tidal wave propagation in the North Adriatic and in the Venice Lagoon is well reproduced by the model. To validate the model results, empirical flux data measured by acoustic Doppler current profiler probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modeled and measured fluxes at the inlets outlines the efficiency of the model to reproduce both tide- and wind-induced water exchanges between the sea and the lagoon. Even in complex areas, where highly varying resolution is needed, the model is suitable for the simulation of the dominating physical processes.  相似文献   
237.
Determination of annual lamination provides important additional constraints to radiometric dates on speleothems, both for dating the duration of specific growth intervals and optimizing growth models. In the absence of visible laminae, however, speleothem age models are reliant upon curve fitting through discretely dated points and are therefore inherently more uncertain than annual chronologies from laminae. Given that the impact of seasonality on speleothems is expected to be strong enough to generate an annual pulse in trace element chemistry regardless of whether or not visible or fluorescent growth laminae are visible, we demonstrate the potential for deriving high-resolution stalagmite chronologies from non-laminated samples using annual chemical variations in stalagmites from two Alpine caves (Obir, Austria and Ernesto, NE Italy). Trace element data were obtained by ion microprobe analyses for H, P, Mg, Na, Sr and Ba and the annual signal was sought using spectral and wavelet analysis. An automated chemical peak-counting software tool was developed in MATLAB©. It counts significant annual peaks using criteria of minimum amplitude in relation to the local standard deviation of signal variation and minimum separation between peaks determined by the thickness of the preceding layers. Verification of the tool using visibly laminated samples suggests the software is a reliable and accurate method of chronology building, with hit ratios greater than 0.93 and less than 0.75% false alarm occurrences. Used in conjunction with other dating methods such as radiocarbon, U–Th and sulphur peak dating, the automated chemical laminae chronology-building approach provides a more meaningful alternative to simple age-depth curve fitting for non-laminated samples.  相似文献   
238.
Experiments ranging from 2 to 3 GPa and 800 to 1300 °C and at 0.15 GPa and 770 °C were performed to investigate the stability and mutual solubility of the K2ZrSi3O9 (wadeite) and K2TiSi3O9 cyclosilicates under upper mantle conditions. The K2ZrSi3O9–K2TiSi3O9 join exhibits complete miscibility in the P–T interval investigated. With increasing degree of melting the solid solution becomes progressively enriched in Zr, indicating that K2ZrSi3O9 is the more refractory end member. At 2 GPa, in the more complex K2ZrSi3O9–K2TiSi3O9–K2Mg6Al2Si6O20(OH)4 system, the presence of phlogopite clearly limits the extent of solid solution of the cyclosilicate to more Zr-rich compositions [Zr/(Zr + Ti) > 0.85], comparable to wadeite found in nature, with TiO2 partitioning strongly into the coexisting mica and/or liquid. However, at 1200 °C, with increasing pressure from 2 to 3 GPa, the partitioning behaviour of TiO2 changes in favour of the cyclosilicate, with Zr/(Zr + Ti) of the K2(Zr,Ti)Si3O9 phase decreasing from ∼0.9 to ∼0.6. The variation in the Ti content of the coexisting phlogopite is related to its degree of melting to forsterite and liquid, following the major substitution VITi+VI□=2VIMg. Received: 26 January 1999 / Accepted: 10 January 2000  相似文献   
239.
—A “quasi continuous mode” monitoring system to measure the radon concentration within a natural environment (mainly groundwater), was designed, assembled and tested, under collaboration between DINCE and ING, partly within the framework of two EC funded programs.¶The radon monitor consists of a customised discrete automatic sampler which produces a gas flux circuit, and an economical f-scintillation cell, coupled with a reliable electronics-photomultiplier assemblage. A convenient calibration system together with a temporised control system have been set up. The overall “mean efficiency” of the system was calculated to be 7.79ǂ.13 counts per minute (cpm) for each Bq/L.¶Taking into consideration the present and future requirements of a geochemical surveillance network to assess natural hazards, the prototype design evolved from the study of existing systems devoted to monitor radon concentration levels, which are critically reviewed within this paper.¶In response to the main prerequisite of a remote station: maximum remote sensor versatility preserving shared software and hardware for the network as a whole, this radon monitoring system was conceived as part of a multi-parametric Geochemical Monitoring System (GMS II) prototype, designed and realised as a test-stand for sensors (chemical, hydrological, geophysical, organic chemistry devoted, etc.) in continuous evolution throughout the international market.  相似文献   
240.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号