首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1901篇
  免费   156篇
  国内免费   13篇
测绘学   54篇
大气科学   199篇
地球物理   613篇
地质学   725篇
海洋学   132篇
天文学   236篇
综合类   12篇
自然地理   99篇
  2023年   6篇
  2022年   15篇
  2021年   47篇
  2020年   51篇
  2019年   35篇
  2018年   58篇
  2017年   81篇
  2016年   120篇
  2015年   104篇
  2014年   126篇
  2013年   196篇
  2012年   155篇
  2011年   108篇
  2010年   110篇
  2009年   80篇
  2008年   66篇
  2007年   38篇
  2006年   68篇
  2005年   43篇
  2004年   38篇
  2003年   31篇
  2002年   48篇
  2001年   32篇
  2000年   16篇
  1999年   15篇
  1998年   18篇
  1997年   17篇
  1996年   13篇
  1995年   22篇
  1994年   15篇
  1993年   13篇
  1992年   7篇
  1991年   22篇
  1990年   11篇
  1989年   11篇
  1987年   12篇
  1986年   11篇
  1985年   14篇
  1984年   16篇
  1983年   15篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   14篇
  1978年   6篇
  1976年   12篇
  1975年   11篇
  1974年   8篇
  1973年   11篇
  1969年   8篇
排序方式: 共有2070条查询结果,搜索用时 468 毫秒
271.
Regional climate model projections for the State of Washington   总被引:3,自引:1,他引:2  
Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional climate of the State of Washington. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year regional climate simulations using the Weather Research and Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970–1999) to the mid twenty-first century (2030–2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations.  相似文献   
272.
The purpose of this study was to evaluate the accuracy and skill of the UK Met Office Hadley Center Regional Climate Model (HadRM3P) in describing the seasonal variability of the main climatological features over South America and adjacent oceans, in long-term simulations (30 years, 1961–1990). The analysis was performed using seasonal averages from observed and simulated precipitation, temperature, and lower- and upper-level circulation. Precipitation and temperature patterns as well as the main general circulation features, including details captured by the model at finer scales than those resolved by the global model, were simulated by the model. However, in the regional model, there are still systematic errors which might be related to the physics of the model (convective schemes, topography, and land-surface processes) and the lateral boundary conditions and possible biases inherited from the global model.  相似文献   
273.
Land surface hydrology (LSH) is a potential source of long-range atmospheric predictability that has received less attention than sea surface temperature (SST). In this study, we carry out ensemble atmospheric simulations driven by observed or climatological SST in which the LSH is either interactive or nudged towards a global monthly re-analysis. The main objective is to evaluate the impact of soil moisture or snow mass anomalies on seasonal climate variability and predictability over the 1986–1995 period. We first analyse the annual cycle of zonal mean potential (perfect model approach) and effective (simulated vs. observed climate) predictability in order to identify the seasons and latitudes where land surface initialization is potentially relevant. Results highlight the influence of soil moisture boundary conditions in the summer mid-latitudes and the role of snow boundary conditions in the northern high latitudes. Then, we focus on the Eurasian continent and we contrast seasons with opposite land surface anomalies. In addition to the nudged experiments, we conduct ensembles of seasonal hindcasts in which the relaxation is switched off at the end of spring or winter in order to evaluate the impact of soil moisture or snow mass initialization. LSH appears as an effective source of surface air temperature and precipitation predictability over Eurasia (as well as North America), at least as important as SST in spring and summer. Cloud feedbacks and large-scale dynamics contribute to amplify the regional temperature response, which is however, mainly found at the lowest model levels and only represents a small fraction of the observed variability in the upper troposphere.  相似文献   
274.
This study aims at understanding the summer ocean-atmosphere interactions in the North Atlantic European region on intraseasonal timescales. The CNRMOM1d ocean model is forced with ERA40 (ECMWF Re-Analysis) surface fluxes with a 1-h frequency in solar heat flux (6 h for the other forcing fields) over the 1959–2001 period. The model has 124 vertical levels with a vertical resolution of 1 m near the surface and 500 m at the bottom. This ocean forced experiment is used to assess the impact of the North Atlantic weather regimes on the surface ocean. Composites of sea surface temperature (SST) anomalies associated with each weather regime are computed and the mechanisms explaining these anomalies are investigated. Then, the SST anomalies related to each weather regime in the ocean-forced experiment are prescribed to the ARPEGE Atmosphere General Circulation Model. We show that the interaction with the surface ocean induces a positive feedback on the persistence of the Blocking regime, a negative feedback on the persistence of the NAO-regime and favours the transition from the Atlantic Ridge regime to the NAO-regime and from the Atlantic Low regime toward the Blocking regime.  相似文献   
275.
This work analyzes the consequences of climate change in the distribution of the Mediterranean high-mountain vegetation. A study area was chosen at the Sierra de Guadarrama, in the center of the Iberian Peninsula (1,795 to 2,374 m asl). Climate change was analyzed from the record of 18 variables regarding temperature, rainfall and snowfall over the period 1951–2000. The permanence of snow cover (1996–2004), landforms stability and vegetation distribution in 5 years (1956, 1972, 1984, 1991 and 1998) were all analyzed. The Nival Correlation Level of the different vegetation classes was determined through their spatial and/or temporal relationship with several climatologic variables, snow cover duration and landforms. In order to quantify trends and major change processes, areas and percent changes were calculated, as well as Mean Annual Transformation Indices and Transition Matrices. The findings reveal that in the first part of the study period (up to the first half of the 1970s) the temperature rise in the mid-winter months caused the reduction of some classes of nival vegetation, while others expanded, favored by high rainfall, decrease in both maximum temperatures and summer aridity, and longer snow cover duration. The second part of the study period was characterized by the consolidation of the increase in all thermal variables, along with an important reduction in rainfall volume and snow cover duration. As a result, herbaceous plants, which are highly correlated with a long snow permanence and abundance of melting water, have been replaced by leguminous shrubs which grow away from the influence of snow, and which are steadily becoming denser.  相似文献   
276.
Previous investigations on regional climate models’ (RCM) internal variability (IV) were limited owing to small ensembles, short simulations and small domains. The present work extends previous studies with a ten-member ensemble of 10-year simulations performed with the Canadian Regional Climate Model over a large domain covering North America. The results show that the IV has no long-term tendency but rather fluctuates in time following the synoptic situation within the domain. The IV of mean-sea-level pressure (MSLP) and screen temperature (ST) show a small annual cycle with larger values in spring, which differs from previous studies. For precipitation (PCP), the IV shows a clear annual cycle with larger values in summer, as previously reported. The 10-year climatology of the IV for MSLP and ST shows a well-defined spatial distribution with larger values in the northeast of the domain, near the outflow boundary. A comparison of the IV of MSLP and ST in summer with the transient-eddy variance reveals that the IV is close to its maximum in a small region near the outflow boundary. Same analysis for PCP in summer shows that the IV reaches its maximum in most parts of the domain, except for a small region on the western side near the inflow boundary. Finally, a comparison of the 10-year climate of each simulation of the ensemble showed that the IV may have a significant impact on the climatology of some variables.  相似文献   
277.
278.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
279.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
280.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号