首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2878篇
  免费   180篇
  国内免费   16篇
测绘学   67篇
大气科学   270篇
地球物理   871篇
地质学   1074篇
海洋学   212篇
天文学   430篇
综合类   13篇
自然地理   137篇
  2023年   14篇
  2022年   21篇
  2021年   56篇
  2020年   67篇
  2019年   50篇
  2018年   97篇
  2017年   114篇
  2016年   177篇
  2015年   137篇
  2014年   181篇
  2013年   268篇
  2012年   206篇
  2011年   156篇
  2010年   155篇
  2009年   141篇
  2008年   104篇
  2007年   66篇
  2006年   96篇
  2005年   91篇
  2004年   82篇
  2003年   50篇
  2002年   65篇
  2001年   45篇
  2000年   23篇
  1999年   23篇
  1998年   29篇
  1997年   28篇
  1996年   25篇
  1995年   42篇
  1994年   26篇
  1993年   16篇
  1992年   10篇
  1991年   29篇
  1990年   15篇
  1989年   14篇
  1987年   12篇
  1985年   21篇
  1984年   30篇
  1983年   27篇
  1982年   21篇
  1981年   22篇
  1980年   11篇
  1979年   22篇
  1978年   18篇
  1977年   11篇
  1976年   10篇
  1975年   16篇
  1974年   12篇
  1973年   13篇
  1969年   14篇
排序方式: 共有3074条查询结果,搜索用时 13 毫秒
101.
102.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
103.
We present a geometric interpretation of the spectral stability of the triangular libration points in the charged three-body problem. We obtain that the spectral stability varies with the position of the center of mass of the three charges with respect to the circumcenter of the triangle configuration, which does not depend directly of the charges. If the center of mass is outside or on the circumference of a well defined radius ??, then spectral stability occurs. In addition, we analyze the existence of resonances within the spectral region of stability under this geometric interpretation, determining resonance curves of order 2, 3, 4, . . ., some of them with multiple resonances.  相似文献   
104.
Noble gas 40Ar may be used as a tracer of the past evolution of volatiles in Mars’ crust, mantle and atmosphere. 40Ar is formed by the radioactive decay of 40K in the mantle and in the crust and is released from the mantle to the atmosphere due to volcanism and from the crust by erosion such as eolian and hydrothermal erosion. Furthermore, 40Ar can escape from the atmosphere into space via atmospheric escape mechanisms. The evolution of the atmospheric abundance of 40Ar thus depends on these three processes whose efficiencies vary with time.In the present study we reconsider atmospheric escape mechanism efficiencies and describe various possible scenarios of the evolution of 40Ar with a model describing the three main reservoirs of 40Ar, the mantle, crust and atmosphere. First, we show that atmospheric escape, which is stronger in the early evolution, does not significantly influence the present abundance of the atmospheric 40Ar. In the early evolution the atmospheric concentration of 40Ar is very low as the outgassing of 40Ar from the mantle occurs relatively late in the martian evolution. Thus, the atmospheric 40Ar concentration is essentially a tracer of Mars’ outgassing history and not of the escape processes. Second, using the results of the most recent published crustal formation models, the calculated present 40Ar atmospheric abundance is smaller than its observed value. This discrepancy may be explained by a significant 40Ar supply from the crust by erosion (16–30% of the 40Ar content of the upper first 10 km of crust). The knowledge of the fraction of crustal 40Ar outgassed to the atmosphere is an important constraint for any future global modelling of past Mars’ hydrothermal activity aiming at better characterizing the role of subsurface aqueous alteration processes in Mars climate evolution. One of the main sources of the uncertainty of these results is the present uncertainty in the measured atmospheric 40Ar value (±20%). More precise measurements of 40Ar and 36Ar in the martian atmosphere are therefore required to better constrain the model.  相似文献   
105.
106.
107.
Detailed studies of nearby cluster-forming molecular clouds can help us understand the physical processes by which most stars form in galaxies. I review recent advances made on this subject. Submillimeter observations of nearby protoclusters suggest that stars are generally built from finite, detached reservoirs of mass inside molecular cloud cores, and point to a cloud fragmentation origin for the IMF. Much progress in this field will come from future large submillimeter instruments such as Herschel and ALMA. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
108.
Although Mars is a favored target for planetary exploration, there is still a need for complementary ground-based observing programs of the Martian atmosphere, and this need will remain in the future. Indeed, as the atmosphere is very tenuous (less than 0.01 bar at the surface), the lines are very narrow and a high spectral resolving power (above 104) is required over large spectral intervals. In addition, ground-based observations of Mars allow the instantaneous mapping of the whole planet, and thus the study of diurnal effects, which cannot be achieved from an orbiter. Recent ground-based achievements about the Martian atmospheric science include the first detection of H2O2 in the submillimeter range, the measurement of winds from CO millimetric transitions, the first detection of CH4 and the O3, H2O2, H2O, and CH4 mapping in the infrared. With an ELT, it will be possible to study at high spatial resolution transient atmospheric phenomena and to search for traces of minor constituents with unprecedented sensitivity. With ALMA, it will be also possible to search for minor species and to map the mesospheric winds for better constraining the climate models.  相似文献   
109.
We present a palaeolimnological study encompassing five centuries of trophic-state change of the dike-breach lake De Waay located on the Rhine-Meuse delta (the Netherlands). Diatom-inferred total phosphorus (TP) concentrations indicate hypertrophic epilimnetic conditions (>300 μg l−1 TP) since the formation of the lake in the fifteenth century until the end of the eighteenth century. Cladocera data support the reconstructed trophic state and indicate turbid conditions in lake De Waay during this period. High inferred TP concentrations as well as the amount of Ti in the sediment reflect numerous flooding events. From the nineteenth century onwards reconstructed TP concentrations decreased to 40–150 μg l−1 due to improvements in sewage and dike systems that considerably diminished direct river flooding and seepage-derived nutrients. As a consequence, the increased stability of littoral habitats led to an increased diversity of the Cladocera assemblages. The most significant decrease in TP concentrations to ~40 μg l−1 occurred between about 1900 and 1930. This mesotrophic phase was a consequence of the isolation of the lake from catchment drainage and the introduction of a highly elaborate flood control during this period. However, since the mid twentieth century a eutrophication trend is preserved in the record, likely related to increased agricultural activity in the vicinity of the lake. Our results emphasize that land-use and trophic-state history must be taken into account when evaluating the ecological status of lakes for water management and protection actions, especially for lakes in landscapes that are strongly modified by human action.  相似文献   
110.
The Western Pyrenees presents a diffuse and moderate ( M ≤ 5.7) instrumental seismicity. It nevertheless historically suffered from strong earthquakes (I = IX MSK). The seismic sources of these events are not yet clearly identified. We focus on the Arudy (1980) epicentral area ( M = 5.1) and propose here the reactivation of early Cretaceous normal faults of the Iberian margin as a potential source. The late Cretaceous inversion of this basin, first in a left-lateral strike-slip mode and then in a more frontal convergence, resulted in a pop-up geometry. This flower structure attests of the presence of a deep crustal discontinuity.
The present-day geodynamic arrangement suggests that this accident is reactivated in a right lateral mode. This reactivation leads to a strain partitioning between the deep discontinuity that accommodates the lateral component of the motion and shallow thrusts, rooted on this discontinuity. These thrusts accommodate the shortening component of the strain. The distribution of the instrumental seismicity fits well the structural model of the Arudy basin. Whatever the compressive regional context, the structural behaviour of the system explains too the extensive stress tensor determined for the Arudy crisis if we interpret it in terms of strain ellipsoid. Indeed numerical modelling has shown that this concomitant activity of strike-slip and thrust faulting results in an extensive component that can rise 50 per cent of the finite strain.
We identify too a 25–30 km long potential seismic source for the Arudy area. The size of the structure and its potential reactivation in a strike-slip mode suggest that a maximum earthquake magnitude of ∼6.5 could be expected. The extrapolation of this model at the scale of the Western Pyrenees allows to propose other potential sources for major regional historical earthquakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号