首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30338篇
  免费   470篇
  国内免费   953篇
测绘学   1556篇
大气科学   2632篇
地球物理   6085篇
地质学   13823篇
海洋学   1350篇
天文学   2669篇
综合类   2178篇
自然地理   1468篇
  2023年   34篇
  2022年   49篇
  2021年   130篇
  2020年   144篇
  2019年   111篇
  2018年   4925篇
  2017年   4235篇
  2016年   2915篇
  2015年   536篇
  2014年   455篇
  2013年   572篇
  2012年   1374篇
  2011年   2995篇
  2010年   2313篇
  2009年   2596篇
  2008年   2077篇
  2007年   2463篇
  2006年   251篇
  2005年   345篇
  2004年   573篇
  2003年   535篇
  2002年   380篇
  2001年   158篇
  2000年   140篇
  1999年   89篇
  1998年   99篇
  1997年   104篇
  1996年   57篇
  1995年   73篇
  1994年   74篇
  1993年   48篇
  1992年   32篇
  1991年   41篇
  1990年   61篇
  1989年   33篇
  1988年   24篇
  1987年   44篇
  1986年   31篇
  1985年   38篇
  1984年   45篇
  1983年   37篇
  1982年   38篇
  1981年   64篇
  1980年   41篇
  1979年   28篇
  1978年   22篇
  1977年   23篇
  1976年   21篇
  1974年   21篇
  1973年   25篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
In recent years, rock fall phenomena in Italy have received considerable attention for risk mitigation through in situ observations and experimental data. This paper reports the study conducted at Camaldoli Hill, in the urban area of Naples, and at Monte Pellegrino, Palermo, Italy. The rocks involved are volcanic Neapolitan yellow tuff (NYT) in the former area and dolomitic limestone in the latter. Both rocks, even though with different strength characteristics, have shown a significant tendency towards rock fragmentation during run out. This behavior was first investigated by comparing the volumes of removable blocks on the cliff faces (V 0) and fallen blocks on the slopes (V f). It was assumed that the ratio V f/V 0 decreases with the distance (x f) from the detachment area by an empirical law, which depends on a coefficient α, correlated with the geotechnical properties of the materials involved in the rock fall. Finally, this law was validated by observation of well-documented natural rock falls (Palermo) and by in situ full-scale tests (Naples). From the engineering perspective, consideration of fragmentation processes in rock fall modeling provides a means for designing low-cost mitigation measures.  相似文献   
72.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   
73.
The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992–2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified.  相似文献   
74.
Summary ?A nonhydrostatic 4-km version of the Global Environmental Multiscale (GEM) model, with detailed microphysics included, was used to forecast the initiation, development, and structure of a tornado-producing supercell storm that occurred near Pine Lake (Alberta, Canada) on 15 July 2000. Examination of observations and comparison with conceptual models indicate that this storm is a good example of supercell storms that regularly produce summertime severe weather over Alberta. It was found that the high-resolution model was able to reproduce the early initiation of convective activity along the Rocky Mountains foothills, as well as the rapid northeastward propagation towards the Pine Lake area and the subsequent intensification into a supercell storm. The general structures of the forecasted convective system correspond well with conceptual representations of such events. Overall, this high-resolution forecast of the Pine Lake supercell storm was a significant improvement over the current operational version of the GEM model (24 km), which was not able to intensify the foothills’ convection into a supercell storm. Finally, it was found that the nonhydrostatic version of the model produces better trajectory and propagation speed of the convective system, as compared with the hydrostatic one. Received March 20, 2001; revised August 24, 2001  相似文献   
75.
Adequate high-quality data on three-dimensional velocities in the atmospheric surface layer (height \(\delta \)) were acquired in the field at the Qingtu Lake Observation Array. The measurement range occupies nearly the entire logarithmic layer from approximately \(0.006\delta \)\(0.2\delta \). The turbulence intensity and eddy structures of the velocity fluctuations in the logarithmic region were primarily analyzed, and their variations in the z (wall-normal) direction were revealed. The primary finding was that the turbulent intensity of wall-normal velocity fluctuations exhibits a sharp upswing in the logarithmic region, which differs from classic scaling law and laboratory results. The upswing of the wall-normal turbulence intensity in the logarithmic region is deemed to be linear based on an ensemble of 20 sets of data. In addition, the wall-normal extent of the correlated structures and wall-normal spectra were compared to low Reynolds number results in the laboratory.  相似文献   
76.
Surface displacements and gravity changes due to volcanic sources are influenced by medium properties. We investigate topographic, elastic and self-gravitation interaction in order to outline the major factors that are significant in data modelling. While elastic-gravitational models can provide a suitable approximation to problems of volcanic loading in areas where topographic relief is negligible, for prominent volcanoes the rough topography could affect deformation and gravity changes to a greater extent than self-gravitation. This fact requires the selection, depending on local relief, of a suitable model for use in the interpretation of surface precursors of volcanic activity. We use the three-dimensional Indirect Boundary Element Method to examine the effects of topography on deformation and gravity changes in models of magma chamber inflation/deflation. Topography has a significant effect on predicted surface deformation and gravity changes. Both the magnitude and pattern of the geodetic signals are significantly different compared to half-space solutions. Thus, failure to account for topographic effects in areas of prominent relief can bias the estimate of volcanic source parameters, since the magnitude and pattern of deformation and gravity changes depend on such effects.  相似文献   
77.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   
78.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   
79.
Characteristics of carbonyl compounds in ambient air of Shanghai,China   总被引:3,自引:0,他引:3  
The levels of carbonyl compounds in Shanghai ambient air were measured in five periods from January 2007 to October 2007 (covering winter, high-air-pollution days, spring, summer and autumn). A total of 114 samples were collected and eighteen carbonyls were identified. Formaldehyde, acetaldehyde and acetone were the most abundant carbonyls and their mean concentrations of 19.40 ± 12.00, 15.92 ± 12.07 and 11.86 ± 7.04 μg m−3 respectively, in the daytime for five sampling periods. Formaldehyde and acetaldehyde showed similar diurnal profiles with peak mixing ratios in the morning and early afternoon during the daytime. Their mean concentrations were highest in summer and lowest in winter. Acetone showed reversed seasonal variation. The high molecular weight (HMW, ≥C5) carbonyls also showed obvious diurnal variations with higher concentrations in the daytime in summer and autumn, while they were all not detected in winter. Formaldehyde and acetaldehyde played an important role in removing OH radicals in the atmosphere, but the contribution of acetone was below 1%. The carbonyls levels in high-air-pollution days were reported. More carbonyl species with higher concentrations were found in high-air-pollution days than in spring. These carbonyls were transported with other pollutants from north and northwest in March 27 to April 2, 2007 and then mixed with local sources. Comparing with Beijing and Guangzhou, the concentrations of formaldehyde and acetaldehyde in Shanghai were the highest, which indicated that the air pollution in Shanghai was even worse than expected.  相似文献   
80.
General purpose Computational Fluid Dynamics (CFD) solvers are frequently used in small-scale urban pollution dispersion simulations without a large extent of ver- tical flow. Vertical flow, however, plays an important role in the formation of local breezes, such as urban heat island induced breezes that have great significance in the ventilation of large cities. The effects of atmospheric stratification, anelasticity and Coriolis force must be taken into account in such simulations. We introduce a general method for adapting pressure based CFD solvers to atmospheric flow simulations in order to take advantage of their high flexibility in geometrical modelling and meshing. Compressibility and thermal stratification effects are taken into account by utilizing a novel system of transformations of the field variables and by adding consequential source terms to the model equations of incompressible flow. Phenomena involving mesoscale to microscale coupled effects can be analyzed without model nesting, applying only local grid refinement of an arbitrary level. Elements of the method are validated against an analytical solution, results of a reference calculation, and a laboratory scale urban heat island circulation experiment. The new approach can be applied with benefits to several areas of application. Inclusion of the moisture transport phenomena and the surface energy balance are important further steps towards the practical application of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号