首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   8篇
  国内免费   2篇
测绘学   82篇
大气科学   6篇
地球物理   61篇
地质学   93篇
海洋学   43篇
天文学   47篇
自然地理   16篇
  2021年   1篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   8篇
  2011年   15篇
  2010年   20篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   5篇
  2004年   17篇
  2003年   11篇
  2002年   18篇
  2001年   16篇
  2000年   12篇
  1999年   18篇
  1998年   15篇
  1997年   20篇
  1996年   13篇
  1995年   8篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1959年   1篇
  1950年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
21.
22.
Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by 20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10–40% of initial values. The pattern of OM and N losses suggested most N would be released outside the flood season, when retention within the floodplain would be likely. The exclusion of macroinvertebrates modestly reduced the rate of OM loss (by about 10%) but had no effect on N dynamics over nine months. Immersion in floodwater accelerated OM loss, but modest variation in litter quality did not affect the breakdown rate. These results are consistent with the concept that decomposition on desert floodplains progresses much as does litter processing in desert uplands, but with periodic bouts of processing typical of aquatic environments when litter is inundated by floodwaters. The strong dependence of litter breakdown rate on weather and floods means that climate change or river flow management can easily disrupt floodplain nutrient dynamics.  相似文献   
23.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
24.
Glacial geomorphologic features composed of (or cut into) Llanquihue drift delineate former Andean piedmont glaciers in the region of the southern Chilean Lake District, Seno Reloncav', Golfo de Ancud, and northern Golfo Corcovado during the last glaciation. These landforms include extensive moraine belts, main and subsidiary outwash plains, kame terraces, and meltwater spillways. Numerous radiocarbon dates document Andean ice advances into the moraine belts during the last glacial maximum (LGM) at 29,363–29,385 14C yr BP , 26,797 14C yr BP , 22,295–22,570 14C yr BP , and 14,805–14,869 14C yr BP . Advances may also have culminated at close to 21,000 14C yr BP , shortly before 17,800 14C yr BP , and shortly before 15,730 14C yr BP . The maximum at 22,295–22,567 14C yr BP was probably the most extensive of the LGM in the northern part of the field area, whereas that at 14,805–14,869 14C yr BP was the most extensive in the southern part. Snowline depression during these maxima was about 1000 m. Andean piedmont glaciers did not advance into the outer Llanquihue moraine belts during the portion of middle Llanquihue time between 29,385 14C yr BP and more than 39,660 14C yr BP . In the southern part of the field area, the Golfo de Ancud lobe, as well as the Golfo Corcovado lobe, achieved a maximum at the outermost Llanquihue moraine prior to 49,892 14C yr BP . Pollen analysis of the Taiquemmire, which is located on this moraine, suggests that the old Llanquihue advance probably corresponds to the time of marine isotope stage 4. The implication is that the Andean snowline was then depressed as much as during the LGM. A Llanquihue-age glacier expansion into the outer moraine belts also occurred more than about 40,000 14C yr BP for the Lago Llanquihue piedmont glacier.  相似文献   
25.
Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 m) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities 1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.  相似文献   
26.
A number of compressional anticlinal structures are identified in the western and northern part of the Faroe–Rockall Plateau. These structures occur on that part of the Faroe–Rockall Plateau which was above sea level during the latest phase of Paleocene plateau basalt extrusion. Three post-basalt compressional phases have affected the plateau. Most of the compressional structures in the northern part of the plateau are related to NE–SW- to ENE–WSW-oriented stress which we date to Late Paleocene–Early Eocene. The Oligocene phase is interpreted as resulting from N–S-directed compressional stress which also mainly affected the compressional structures on the northern part of the plateau. Compressional stress from the northwest seemed to affect the whole of the Faroe–Rockall Plateau and we suggest it to be of Miocene age. It is proposed that during the Late Paleocene–Early Eocene phase of compression local structure, and anomalously oriented gravitational ridge-push from the now extinct Aegir Axis contributed to a local NE–SW compressional stress system. The two later deformation phases were apparently connected to the regional northwest European stress system with small local modifications.  相似文献   
27.
We report U–Pb dates and Lu–Hf isotope data, obtained by LAM-ICPMS, for zircons from metamorphic rocks of the Setesdalen valley, situated in the Telemark block south of the classic Telemark region of southern Norway. The samples include infracrustal rocks from the metamorphic basement, metaigneous rocks and metasediments from the Byglandsfjorden supracrustal cover sequence, and metaigneous rocks which intruded the whole succession. The main crustal evolution took place from 1,550–1,020 Ma, beginning with the emplacement of juvenile tonalitic melts; the contribution of older crustal material increased with time. Around 1,320 Ma, further addition of juvenile material occurred, involving both mafic and felsic melts, metamorphism and deformation. Acid magmas with high FeO*/MgO were intruded at 1,215 Ma, coinciding with underplating elsewhere in South Norway. The period starting at 1,215 Ma is represented by supracrustal rocks, principally metarhyolites with minor mafic material and immature sediments of the Byglandsfjorden Group. The crust generation processes ended with the intrusion of diorites and granodiorites at 1,030 Ma, late in the Sveconorwegian orogeny. Regional processes of metamorphism and deformation (around 1,290 and 1,000 Ma) can be related to the assembly of Rodinia. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号