首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   12篇
  国内免费   4篇
测绘学   6篇
大气科学   46篇
地球物理   73篇
地质学   153篇
海洋学   56篇
天文学   65篇
自然地理   20篇
  2023年   4篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   5篇
  2014年   11篇
  2013年   16篇
  2012年   11篇
  2011年   22篇
  2010年   28篇
  2009年   24篇
  2008年   13篇
  2007年   16篇
  2006年   15篇
  2005年   13篇
  2004年   16篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1996年   13篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   3篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   10篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1967年   1篇
  1962年   1篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
21.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   
22.
The distribution equilibrium of Au and Re between nickel-iron and basaltic melts was studied at 1400–1600°C, using radioactive tracers. Metal/silicate distribution coefficients were 1–3 orders of magnitude higher than earlier estimates, as follows. Mauna Loa basalt—Fe10Ni90: DAu = 3.3 × 104, DRe = (2.4?89) × 104. Gorda Ridge basalt—Fe10Ni90: DAu = (18?75) × 104. Synthetic lunar basalt—Fe70 Ni30: DAu≥ 2 × 104, DRe ≥ 2 × 103. The experimental ΔG1800° for the distribution of Au between nickel-iron and Mauna Loa basalt is ?40 kcal/mole, compared to a calculated value of about ?110 kcal/mole for a reaction involving simple Au3+ ions. Presumably the difference represents stabilization of Au(III) by complex formation with ligands such as Cl?, H2O, etc.Gold abundances in lunar basalts are roughly consistent with the measured DAu, but those in terrestrial basalts are two orders of magnitude too high. This discrepancy may reflect complexing by volatiles in the Earth's upper lithosphere, as well as oxidative destruction of metal in the final stages of accretion. In the absence of a metal phase, siderophile trace elements would remain trapped in the upper mantle and crust.  相似文献   
23.
Spectral analysis enhances the ability to analyze groundwater flow at a steady state by separating the top boundary condition into its periodic forms. Specifically, spectral analysis enables comparisons of the impact of individual spatial scales on the total flow field. New exact spectral solutions are presented for analyzing 3D groundwater flow with an arbitrarily shaped top boundary. These solutions account for depth-decaying, anisotropic and layered permeability while utilizing groundwater flux or the phreatic surface as a top boundary condition. Under certain conditions, groundwater flow is controlled by topography. In areas where the groundwater flow is controlled by the topography, the unknown water table is often approximated by the topography. This approximation induces a systematic error. Here, the optimal resolution of digital elevation models (DEMs) is assessed for use as a top boundary in groundwater flow models. According to the analysis, the water-table undulation is smoother than the topography; therefore, there is an upper limit to the resolution of DEMs that should be used to represent the groundwater surface. The ability to represent DEMs of various spectral solutions was compared and the results indicate that the fit is strongly dependent on the number of harmonics in the spectral solution.  相似文献   
24.
Four ureilites (Dyalpur, Goalpara, Haverö, and Novo Urei) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, and U. An attempt has been made to resolve the data into contributions from the parent ultramafic rock and the injected, carbon- and gas-rich vein material. Interelement correlations, supported by analyses of separated vein material (WANKE et al, 1972), suggest that the vein material is enriched about 10-fold in refractory Ir and Re over moderately volatile Ni and Au, and is low in volatiles except Ge, C, and noble gases. It appears to be a refractory-rich nebular condensate that precipitated carbon by surface catalytic reactions at ˜500K and trapped noble gases but few other volatiles. The closest known analogue is a Cr- and C-rich fraction from the Allende meteorite, highly enriched in heavy noble gases and noble metals. By analogy with Allende, the gas-bearing phase in ureilites may have been an Fe, Cr-sulfide.

The ultramafic rock contains siderophiles and chalcophiles (Ni, Au, Ge, S, Se) at ˜0.05 of Cl chondrite level, and highly volatile elements (Rb, Cs, Bi, Tl, Br, Te, In, Cd) at ˜0.01 Cl level. It probably represents the residue from partial melting of a C3V-like chondrite body, under conditions where phase separation was incomplete so that some liquid was retained. The vein material was injected into this rock at some later time.  相似文献   

25.
Noble gases in three meteoritic samples were examined by stepwise heating, in an attempt to relate peaks in the outgassing curves to specific minerals: NeKrXe in Allende (C3V) and an Allende residue insoluble in HF-HCl, and Xe in Abee (E4). In Allende, chromite and carbon contain most of the trapped Ne (20Ne/22Ne ≈ 8.7) and anomalous Xe enriched in light and heavy isotopes, and release it at ~850°C (bulk meteorite) or 1000°C (residue). Mineral Q, containing most of the trapped Ar, Kr, Xe as well as some Ne (20Ne/22Ne ≈ 10.4), releases its gases mainly between 1200 and 1600°C, well above the release temperatures of organic polymers (300–500°) or amorphous carbon (800–1000°). The high noble-gas release temperature, ready solubility in oxidizing acids, and correlation with acid-soluble Fe and Cr all point to an inorganic rather than carbonaceous nature of Q.All the radiogenic 129Xe is contained in HCl, HF-soluble minerals, and is distributed as follows over the peaks in the release curve: Attend 1000° (75%), 1300° (25%); Abee (data of Hohenberg and Reynolds, 1969) ~850° (15%), 1100° (60%), 1300° (25%). No conclusive identifications of host phases can yet be given; possible candidates are troilite and silicates for Allende, and djerfisherite, troilite and silicates for Abee.Mineral Q strongly absorbs air xenon, and releases some of it only at 800–1000°C. Dilution by air Xe from Q and other minerals may explain why temperature fractions from bulk meteorites often contain less 124–130Xe for a given enrichment in heavy isotopes than does xenon from etched chromitecarbon samples, although chromite-carbon is the source of the anomalous xenon in either case. Air xenon contamination thus is an important source of error in the derivation of fission xenon spectra.  相似文献   
26.
27.
To simulate trapping of noble gases by meteorites, we reacted 15 FeCr or FeCrNi alloy samples with CO, H2O or H2S at 350–720 K, in the presence of noble gases. The reaction products, including (Fe,Cr)2O3, FeCr2S4, FeS, C, and Fe3C, were analyzed by mass spectrometry, usually after chemical separation by selective solvents. Three carbon samples were prepared by catalytic decomposition of CO or by dehydration of carbohydrates with H2SO4.The spinel and carbon samples were similar to those of earlier studies (Yang et al., 1982 and Yang and Anders, 1982), with only minor effects attributable to the presence of Ni. All samples sorted substantial amounts of noble gases, with distribution coefficients of 10?1–10?2 cm3 STP/g atm for Xe. On the basis of release temperature three gas components were distinguished: a generally dominant physisorbed component (20–80% of total), and two more strongly bound, chemisorbed and trapped components. Judging from the elemental pattern, the adsorbed components were acquired at the highest noble gas partial pressure encountered by the sample—atmosphere or synthesis vessel.Sulfides, particularly daubréelite, showed three distinctive trends relative to chromite or magnetite: the high-T component was larger, 30–70% of the total; NeXe ratios were higher, by up to 102, possibly due to preferential diffusion of Ne during synthesis. In one synthesis, at relatively high P, the gases were sorbed with only minimal elemental fractionation, presumably by occlusion.Most of the features of primordial noble gases can be explained in terms of the data and concepts presented in the three papers of this series. The elemental fractionation pattern of Ar, Kr, Xe in meteorites, terrestrial rocks, and planets resembles the adsorption pattern on the solids studied: carbon, spinels, Sulfides, etc. The variation in NeAr ratio may be explained by preferential diffusion of Ne. The high release temperature of meteoritic noble gases may be explained by transformation of physisorbed to chemisorbed gas, as observed in some experiments. The ready loss of meteoritic heavy gases on surficial oxidation (“Phase Q”) is consistent with adsorption, as is the high abundance. Extrapolation of the limited laboratory data suggests that the observed amounts of noble gases could have been adsorbed from a solar gas at 160–170 K and 10?6–10?5 atm, i.e. in the early contraction stages of the solar nebula. The principal unsolved problem is the origin of isotopically anomalous, apparently mass-fractionated noble gases in the Earth's atmosphere and in meteoritic carbon and chromite.  相似文献   
28.
Using hydrogeochemical analysis of two large boreal rivers (pristine Kalix and hydropower regulated Lule) discharging into the Gulf of Bothnia, the major impacts of regulation on water discharge, element transport and their seasonal redistribution have been assessed. The pre-regulation hydrogeochemical features were assumed to be similar for the two rivers. For the Lule River, the average maximum runoff was almost halved, while the average minimum was tripled as a result of the regulation. The fraction of winter transport of total organic carbon (TOC), Fe, Si, suspended Mn and P in the Lule River was, according to a conservative estimate, two to three times higher than in the pristine river. Longer residence time in the Lule River delayed arrival of the suspended Mn peak and dissolved Si decline to the river mouth. During summer, the suspended C/N ratio in the regulated river was 10–20 compared to <10 for the pristine, suggesting presence of predominantly old organic material. This was supported by a virtually constant suspended P/Fe ratio throughout the year in the Lule River, indicating low abundance of phytoplankton. TOC varied irregularly in the Lule River suggesting temporal disconnection between the river and the upper riparian zone. The disappearance of the spring flow maximum, a shift of element transport from spring to winter and supply of mainly old organic material during the vegetation growth season may have a pronounced impact on the ecosystem of the Gulf of Bothnia and the river itself.  相似文献   
29.
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for the elements Ag, Au, Bi, Br, Cd, Ce, Cs, Eu, Ge, In, Ir, Lu, Nd, Ni, Os, Pd, Pt, Rb, Re, Sb, Se, Sn, Tb, Te, Tl, Yb, and Zn. The data were combined with 9 earlier analyses from this laboratory and examined for evidence of chemical fractionation in C1 chondrites.A number of elements (Br, Rb, Cs, Au, Re, Os, Ni, Pd, Sb, Bi, In, Te) show small but correlated variations. Those of the first 8 probably reflect hydrothermal alteration in the meteorite parent body, whereas those of Sb, Bi, In, and Te may at least in part involve nebular processes. Br and Au show systematic abundance differences from meteorite to meteorite, which suggests hydrothermal transport on a kilometer scale. The remaining elements vary from sample to sample, suggesting transport on a centimeter scale.There is no conclusive evidence for nebular fractionation affecting C1 's. Though C1 chondrites have lower ZrHf and IrRe ratios than do other chondrite classes, these ratios vary in other classes, suggesting that those classes rather than C1's are fractionated. Three fractionation-prone REE—Ce, Eu, and Yb have essentially the same relative abundances in C1's and all other chondrite classes, and hence apparently are not fractionated in C1's. We did not confirm the large Tb and Yb variations in C1's reported by other workers.We present revised mean C1 abundances for 35 elements, based on the new data and a critical selection of literature data. Changes are generally less than 10%, except for Br, Rb, Ag, Sb, Te, Au, and the REE.The Plainview C2 xenolith has normal trace element abundances, except for 3 elements falling appreciably above the C2 range: Rb, Cs, and Bi. Hydrothermal alteration may be the reason for all 3, though nebular fractionation remains a possibility for Bi.  相似文献   
30.
We estimated the net annual air–sea exchange of carbon dioxide (CO2) using monitoring data from the East Gotland Sea, Bornholm Sea, and Kattegat for the 1993–2009 period. Wind speed and the sea surface partial pressure of CO2 (pCO2w), calculated from pH, total alkalinity, temperature, and salinity, were used for the flux calculations. We demonstrate that regions in the central Baltic Sea and the Kattegat alternate between being sinks (−) and sources (+) of CO2 within the −4.2 to +5.2 mol m−2 yr−1 range. On average, for the 1994–2008 period, the East Gotland Sea was a source of CO2 (1.64 mol m−2 yr−1), the Bornholm Sea was a source (2.34 mol m−2 yr−1), and the Kattegat was a sink (−1.16 mol m−2 yr−1). Large inter-annual and regional variations in the air–sea balance were observed. We used two parameterizations for the gas transfer velocity (k) and the choice varied the air–sea exchange by a factor of two. Inter-annual variations in pCO2w between summers were controlled by the maximum concentration of phosphate in winter. Inter-annual variations in the CO2 flux and gas transfer velocity were larger between winters than between summers. This indicates that the inter-annual variability in the total flux was controlled by winter conditions. The large differences between the central Baltic Sea and Kattegat were considered to depend partly on the differences in the mixed layer depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号