首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   19篇
  国内免费   4篇
测绘学   7篇
大气科学   25篇
地球物理   66篇
地质学   122篇
海洋学   36篇
天文学   39篇
综合类   1篇
自然地理   32篇
  2024年   1篇
  2022年   5篇
  2021年   3篇
  2020年   10篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   22篇
  2012年   22篇
  2011年   34篇
  2010年   16篇
  2009年   22篇
  2008年   27篇
  2007年   11篇
  2006年   11篇
  2005年   7篇
  2004年   13篇
  2003年   12篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有328条查询结果,搜索用时 78 毫秒
231.
We propose measuring vulnerability of selected outcome variables of concern (e.g. agricultural yield) to identified stressors (e.g. climate change) as a function of the state of the variables of concern relative to a threshold of damage, the sensitivity of the variables to the stressors, and the magnitude and frequency of the stressors to which the system is exposed. In addition, we provide a framework for assessing the extent adaptive capacity can reduce vulnerable conditions. We illustrate the utility of this approach by evaluating the vulnerability of wheat yields to climate change and market fluctuations in the Yaqui Valley, Mexico.  相似文献   
232.
The Hawaiian–Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for 80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past 45 m.y.  相似文献   
233.
Desorption is one of the most critical processes affecting the effectiveness of soil and ground water remediation. None of the currently adopted desorption models can accurately quantify desorption of low-hydrophobicity organic chemicals, and thus could potentially mislead remediation design and decision-making. A recently developed dual-equilibrium desorption (DED) model was found to be much more accurate in quantifying desorption. A screening-level transport model, DED-Transport, was developed to simulate the DED effect on behaviors of organic contaminant plumes during remediation. DED-Transport requires only simple parameters, but is applicable to many remediation scenarios. DED-Transport can be used as a decision-support tool in site remediation to more precisely predict the time required for cleanup.  相似文献   
234.
Kimberlites from West Greenland have Hf-Nd isotope as well as major and trace element compositions that are similar to other Group I kimberlites, but that are distinctive in the spectrum of magmas sampled at Earth’s surface. The West Greenland kimberlites have εNdi that ranges from +1.6 to +3.1 and εHfi that ranges from −4.3 to +4.9. The samples exhibit ubiquitous negative ΔεHfi (deviation from the ocean island basalt εHf-εNd reference line), ranging from −1.8 to −11.2. The kimberlites are characterized by steep heavy rare earth element patterns, positive Ta-Nb anomalies and negative Hf-Zr anomalies. These chemical signals are consistent with the presence of ancient, subducted oceanic crust in the kimberlite source region. In the model we present, dewatering and possibly partial melting of rutile-bearing oceanic crust during subduction results in characteristic trace element patterns in the residual crust. During aging, the Hf-Nd isotopic composition of this dewatered/partially melted EMORB-type crust evolves to negative ΔεHfi values. Metasomatic fluids derived from this ancient subducted oceanic crust infiltrate and impart their trace element and isotopic signal on proximal peridotitic mantle. Melting of this metasomatized mantle peridotite results in kimberlite magmas.  相似文献   
235.
It has been assumed that soil pendants form in a similar manner as stalactites, in which innermost laminae are the oldest and outer laminae are the youngest. This study presents a new interpretation for soil pendant development. Pahranagat Valley, Nevada, pendants contain features indicating continued precipitation through time at the clast–pendant contact, implying that the oldest deposits are not always found at the pendant–clast contact, as other studies have assumed. These features include a void at the clast–pendant contact where minerals such as calcium carbonate, silica, and/or fibrous silicate clays precipitate. In addition, fragments of the parent clast and detrital grains are incorporated into the pendant and are displaced and/or dissolved and result in the formation of sepiolite. This study indicates that pendants are complex, open systems that during and after their formation undergo chemical changes that complicate their usefulness for dating and paleoenvironmental analyses.  相似文献   
236.
The spatial variation of racisms is an under-researched field of inquiry, certainly in Australia. This paper explores the geographies of racism in New South Wales. Responses to three opinion polls conducted between 1994 and 1996 were used to construct patterns of racisms across NSW. Preliminary findings suggest a substantive degree of racism in NSW. There was little evidence of an urban-rural variation in terms of ethnocentrism. Examination of regional variations confounds this simple division. Social Constructionist theory is put forward as a spatially sensitive theory for understanding and responding to the geographies of racism. The identification of regional variations in racism is crucial to the development of regionally specific anti-racism campaigns. This paper highlights the need for more comprehensive analyses of the varying causes and remedies for racisms.  相似文献   
237.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   
238.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   
239.
Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater restrictions on boat traffic in shallow-water habitats and establishing more sanctuaries in shallow-water areas that have complete protection from human disturbance. *** DIRECT SUPPORT *** A01BY074 00013  相似文献   
240.
Dawn C. Parker  Amy Hessl 《Geoforum》2008,39(2):789-804
Land-use systems are characterized by complex interactions between human decision-makers and their biophysical environment. Mismatches between the scale of human drivers and the impacts of human decisions potentially threaten the ecological sustainability of these systems. This article reviews sources of complexity in land-use systems, moving from the human decision level to human interactions to effects over space, time and scale. Selected challenges in modeling such systems and potential resolutions are discussed, including strategies to empiricize complex models and methods for linking models across human and natural systems. Illustrative examples from published literature and an ongoing research project focused on timber harvest and carbon sequestration are used throughout the paper. The paper concludes with a brief discussion of remaining challenges to modeling indirect and cross-scale linkages and of the potential utility of complex models of land systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号