首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   3篇
  国内免费   2篇
测绘学   7篇
大气科学   10篇
地球物理   17篇
地质学   45篇
海洋学   3篇
天文学   5篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1987年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
81.
Magnetic susceptibility (MS) of the Quaternary long-term mid-latitude Maros fluvial fan (Pannonian Basin) was recorded to understand the stratigraphical features of source-proximal fluvial depositional settings. Three fully cored 500-m-deep boreholes were sampled at 0.5-m intervals; low-field and frequency dependent MS were measured, and complementary hysteresis and SEM-EDAX investigations were performed on selected samples. Logged susceptibility data were also used to log correlations established by a simultaneous comparison of wireline log and laboratory measurements. Time-series analyses of the susceptibility records reveal a ~41-ka and ~100-ka cyclicity. Towards the source-distal sections the intensity of the ~41-ka cycles decreases, while that of the ~100-ka cycles remains strong. Stratigraphical and spectral similarities were observed between the Maros fluvial fan and Chinese loess records; however, based on complementary magnetic data, the magnetic phase of the Maros Fan sections is related to the detrital magnetite that originates from the catchment during early postglacial permafrost degradations. The amplification of the ~41-ka cycles can be attributed to the very high susceptibility values in source-proximal settings and to the special stratigraphical feature of the distributive fluvial systems. This comprises the increased avulsion frequency on the fluvial fans in ‘glacial recession periods’, in concert with the ‘early postglacial’ occurrence of the permafrost-related magnetite originating from the catchment. As a local phenomenon, this is significant since it records the obliquity-driven variations in permafrost development in a catchment. However, fluvial and alluvial fans are widespread depositional landforms within the Eurasian mountain range and were possibly the same during the Quaternary deglaciations. Thus, obliquity-driven magnetic susceptibility variations in source-proximal fan deposits attached or adjacent to regions of loess deposition should also be considered when scanning for potential source material of aeolian deposits.  相似文献   
82.
The theory of velocity dependent inertial induction, based upon extended Mach’s principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth’s inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth’s inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.  相似文献   
83.
84.
This paper presents the effect of random inclusion of polypropylene fibers on strength characteristics of soil. Locally available cohesive soil (CL) is used as medium and polypropylene fibers with three aspect ratios (l/d = 75, 100 and 125) are used as reinforcement. Soil is compacted with standard Proctor’s maximum density with low percentage of reinforcement (0–1% by weight of oven-dried soil). Direct shear tests, unconfined compression tests and CBR tests were conducted on un-reinforced as well as reinforced soil to investigate the strength characteristics of fiber-reinforced soil. The test results reveal that the inclusion of randomly distributed polypropylene fibers in soil increases peak and residual shear strength, unconfined compressive strength and CBR value of soil. It is noticed that the optimum fiber content for achieving maximum strength is 0.4–0.8% of the weight of oven-dried soil for fiber aspect ratio of 100.  相似文献   
85.
The discovery of Permian, Mesozoic and Palaeocene palynomorphs from the Nindam forearc basin, exposed along the Indus Suture Zone in Ladakh, is reported. The palynomorphs are from volcanogenic sandstones and are poorly preserved, distorted and show the effects of abrasion (striation marks). The frequent occurrence of Proxapertites indicates the assemblage is at least Palaeocene in age. The Palaeocene palynomorphs and sediments were transported to the Nindam trough from nearby elevated landward regions (islands). These Palaeocene provenance areas were characterized by an estuarine, nearshore, tropical, warm‐humid environment and were situated at equatorial palaeolatitudes. However, the occurrence of Permian and Mesozoic palynomorphs in the assemblage indicates that the Late Palaeozoic and Mesozoic Tethyan sedimentary rocks exposed along the northern margin of the Indian plate were redeposited into the tectonically active Cretaceous–Palaeocene trench–subduction complex that existed between the Indian and the Asian plates until the collision took place at ~50–60 Ma.  相似文献   
86.
87.
Flow pulsations in two-phase and single-phase near-critical fluids are considered as a possible source of ultra-low-frequency seismo-electromagnetic variations. The conditions for generation and suppression of density wave instability in the crust are analyzed and the surface electromagnetic effect due to streaming potential generation is estimated. The upper limit of amplitude of magnetic field variations due to density wave instability is about 0.1 nT for single-phase supercritical and 1 nT for two-phase flow oscillations in the frequency range \(10^{-4}{-}10^{-2}~\) Hz for the temperature gradients and spatial scales possible during strike slip events. The signal is characterized by a decaying amplitude with typical relaxation time of about several quasi-periods. The possibility of generation of very low-frequency flow pulsations in two-phase fluids via individual bubble evolution and interaction with external acoustic waves is discussed.  相似文献   
88.
Studies on the soil properties of the apparently flat-lying, but salt-affected Banni mudflat region of arid Kachchh in western India revealed the influence of subtle topographic variations on soil texture and nature and distribution of salts. Six master pedons were investigated to an average depth of 150 cm. The pedons on the upper surfaces showed an abundance of fine sand and a gradual impoverishment of silt and clay, as also lesser amounts of salts in the profiles. Pedons on the successively lower surfaces showed more silt and clay contents, as well as higher amounts of salts. The findings helped to identify the areas suitable for pasture development in this vast degraded rangeland, and to suggest some management practices for improvement.  相似文献   
89.
The granulite complex around Jenapore, Orissa, Eastern Ghats granulite belt, bears the imprint of two episodes of strong deformation (D1 and D2) attended with foliation (fabric) development (S1 and S2). Two distinct metamorphic events at P-T conditions of ∼900°C at ∼9 kbar and ∼600°C at ∼6 kbar are correlated with D1 and D2 respectively. The reaction textures in S1-microdomains are interpreted to be the product of near isobaric cooling at ∼9 kbar from 950°C to 600°C, whereas those in the S2-microdomains are considered to be the result of an up-pressure trajectory from ∼6 kbar at 600°C. The D1-M1 high P-T granulite event is interpreted to be Archean in age (ca. 3 Ga) on the basis of the isotopic data obtained from the charnockite suite of the area. The later relatively low P-T granulite facies event, attendant to D2-S2 is considered to be related to the Grenvillian orogeny as represented by the dominant isotopic record in the belt.  相似文献   
90.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号