首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   3篇
  国内免费   2篇
测绘学   7篇
大气科学   10篇
地球物理   17篇
地质学   45篇
海洋学   3篇
天文学   5篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1987年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
71.
Assessment of the environmental impact of Non Point Source (NPS) pollutants on a global, regional and localized scale is the key component for achieving sustainability of agriculture as well as preserving the environment. The knowledge and information required to address the problem of assessing the impact of NPS pollutants like Nitrogen (N), Phosphorus (P), etc., on the environment crosses several sub-disciplines like remote sensing, Geographical Information System (GIS), hydrology and soil science. The remote sensing data, by virtue of its potential like synopticity, multi-spectral and multi-temporal capability, computer compatibility, besides providing almost real time information, has enhanced the scope of automation of mapping dynamic elements, such as land use/land cover, degradation profile and computing the priority categorisation of sub-watersheds. The present study demonstrates the application of remote sensing, GIS and distributed parameter model Agricultural Non-Point Source Pollution Model (AGNPS) in the assessment of hazardous non-point source pollution in a watershed. The ARC-INFO GIS and remote sensing provided the input data to support modelling, while the AGNPS model predicted runoff, sediment and pollutant (N and P) transport within a watershed. The integrated system is used to evaluate the sediment pollution in about 2700 ha Karso watershed located in Hazaribagh area of Jharkhand State, India. The predicted values of runoff and sediment yield copared reasonably well with the measured values. It is important to emphasize that this study is not intended to characterise, in an exhaustive manner. Instead, the goal is to illustrate the implications and potential advantages of GIS and remote sensing based Hydrology and Water quality (H/WQ) modelling framework.  相似文献   
72.
Development of a spectral library is a prerequisite for the higher order classification of satellite data and hyperspectral image analysis to map any ecosystem with rich diversity. In this study, sampling methodology, collection of field and laboratory spectral signatures and post-processing methodologies were investigated for developing an exclusive spectral library of mangrove species using hyperspectral spectroscopic techniques. Canopy level field spectra and leaf level laboratory spectra were collected for 34 species (25 true and 9 associated mangroves) from two different mangrove ecosystems of the Indian east coast. Post-processing steps such as removal of water vapour absorption bands, correction of drifts which occur due to the thermal properties of the instrument during data collection and smoothing of spectra for its further utilisation were applied on collected spectra. The processed spectra were then compiled as spectral library.  相似文献   
73.
The cone-building volcanic activity and subsequent erosion of San Francisco Mountain, AZ, USA, were studied by using high-resolution digital elevation model (DEM) analysis and new 40Ar/39Ar dating. By defining remnants or planèzes of the volcano flanks in DEM-derived images, the original edifice can be reconstructed. We propose a two-cone model with adjacent summit vents which were active in different times. The reconstructed cones were 4,460 and 4,350 m high a.s.l., corresponding to ∼2,160 and 2,050 m relative height, respectively. New 40Ar/39Ar data allow us to decipher the chronological details of the cone-building activity. We dated the Older and Younger Andesites of the volcano that, according to previous mapping, built the stage 2 and stage 3 stratocones, respectively. The new 40Ar/39Ar plateau ages yielded 589–556 ka for the Older and 514–505 ka for the Younger Andesites, supporting their distinct nature with a possible dormant period between. The obtained ages imply an intense final (≤100 ka long) cone-building activity, terminating ∼100 ka earlier than indicated by previous K-Ar ages. Moreover, 40Ar/39Ar dating constrains the formation of the Inner Basin, an elliptical depression in the center of the volcano initially created by flank collapse. A 530 ka age (with a ±58.4 ka 2σ error) for a post-depression dacite suggests that the collapse event is geochronologically indistinguishable from the termination of the andesitic cone-building activity. According to our DEM analysis, the original cone of San Francisco Mountain had a volume of about 80 km3. Of this volume, ∼7.5 km3 was removed by the flank collapse and subsequent glacial erosion, creating the present-day enlarged Inner Basin, and ∼2 km3 was removed from the outer valleys by erosion. Based on volumetric analysis and previous and new radiometric ages, the average long-term eruption rate of San Francisco Mountain was ∼0.2 km3/ka, which is a medium rate for long-lived stratovolcanoes. However, according to the new 40Ar/39Ar dates for the last ≤100 ka period, the final stratovolcanic activity was characterized by a greater ∼0.3 km3/ka rate.  相似文献   
74.
Quasi‐planar morphological surfaces may become dissected or degraded with time, but still retain original features related to their geologic‐geomorphic origin. To decipher the information hidden in the relief, recognition of such features is required, possibly in an automated manner. In our study, using Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), an existing algorithm has been adapted to recognize quasi‐planar features fulfilling specified criteria. The method has been applied to a study area of the Central Andes with Miocene to Quaternary volcanic edifices, tilted ignimbrite surfaces, and basin‐filling sediments. The result is a surface segmentation, whereas non‐planar features (gullies, tectonic faults, etc.) are sorted out. The main types of geomorphic features that can be distinguished and interpreted are as follows. (1) The west‐dipping western margin of the Altiplano is differentiated into segments of the lower sedimentary cover that of increased erosion by tectonic steepening at intermediate levels, and an upper plane with limited erosion. (2) In the central part of the Western Cordillera, the Oxaya ignimbrite block shows a ‘striped’ bulging pattern that results from a smoothly changing surface dip. This pattern is due to continuous folding/warping of the ignimbrite block possibly related to gravitational movements. (3) To the west, large, uniform planes correspond to flat, smooth, tectonically undisturbed surfaces of young sedimentary cover of the Central Basin. (4) The evolution of Taapaca volcanoes with sector collapse events and cone‐building phases is shown by several segments with overlapping clastic aprons. (5) To the east, on the western margin of the Altiplano, young intermontane basins filled by Upper Miocene sediments show progressively increasing dip toward basin margins, reflected by a circular pattern of the segmentation planes. We show that the segmentation models provide meaningful images and additional information for geomorphometric analysis that can be interpreted in terms of geological and surface evolution models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
75.
The Weather Research and Forecasting model has been used to examine the role of land surface processes on Indian summer monsoon simulations. Isolated experiments have been carried out with physical parameterization schemes (land surface and planetary boundary layer) and data assimilation to examine their relative roles in the representation of regional hydroclimate in model simulations. The impact of vegetation green fraction on the model simulations has been extensively studied by replacing the default United States Geological Survey (USGS) vegetation cover data with that of Indian Space Research Organisation (ISRO) data. Results indicate that differences in the treatment of surface processes in the model lead to large differences in precipitation simulation over the Indian domain. Several hydroclimate parameters from the simulations using ISRO and USGS vegetation green fractions were examined. It is seen that the role of vegetation green fraction in these experiments has been to increase latent heat flux to the atmosphere. Two sets of data assimilation experiments were also carried out for an entire year using the same set of observed data but with different land surface parameterization schemes. It is found that evenwhen using the same observed data, the differences in land surface schemes reduce the impact and contribution of observed data being assimilated into the model. The hydroclimate over the region becomes a function of the land surface scheme. This study highlights the importance of vegetation green fraction and land surface schemes in the context of the regional hydroclimate over South Asia.  相似文献   
76.
77.
Three specimens of the serranid fish(Serranidae), Plectranthias kamii Randall, 1980 were collected from fish market, Bitung, North Sulawesi on May and June 2010. Some morphological characters P. kamii is closely related to P. sheni, P. megalophthalmus, P. retrofasciatus, P. rubrifasciatus, P. knappi, P. helenae, P. pelicieri, P. jothyi, P.retrofasciatus and P. randalli in sharing of body width, upper jaw length, pelvic spine length and orbit diameter.Meristic count characters of P. kamii differ from P. sheni, P. pilicieri, P. megalophthalmus, P. retrofasciatus and P.rubrifasciatus in having more numerous dorsal spine(18 vs. 15–17) and below lateral line(33–34 vs. 29–33) and differ from P. megalophthalmus and P. rubrifasciatus in having more numerous pored scales in lateral line(13 vs.14–15) and shorter of anal spine. The present anthiine fish collected from Bitung, Indonesia was described as new record and bringing the total number of species of this genus known in Indonesia to seven.  相似文献   
78.
Erosion calderas: origins, processes, structural and climatic control   总被引:1,自引:0,他引:1  
 The origin and development of erosion-modified, erosion-transformed, and erosion-induced depressions in volcanic terrains are reviewed and systematized. A proposed classification, addressing terminology issues, considers structural, geomorphic, and climatic factors that contribute to the topographic modification of summit or flank depressions on volcanoes. Breaching of a closed crater or caldera generated by volcanic or non-volcanic processes results in an outlet valley. Under climates with up to ∼2000–2500 mm annual rainfall, craters, and calderas are commonly drained by a single outlet. The outlet valley can maintain its dominant downcutting position because it quickly enlarges its drainage basin by capturing the area of the primary depression. Multi-drained volcanic depressions can form if special factors, e.g., high-rate geological processes, such as faulting or glaciation, suppress fluvial erosion. Normal (fluvial) erosion-modified volcanic depressions the circular rim of which is derived from the original rim are termed erosion craters or erosion calderas, depending on the pre-existing depression. The resulting landform should be classed as an erosion-induced volcanic depression if the degradation of a cluster of craters produces a single-drained, irregular-shaped basin, or if flank erosion results in a quasi-closed depression. Under humid climates, craters and calderas degrade at a faster rate. Mostly at subtropical and tropical ocean-island and island-arc volcanoes, their erosion results in so-called amphitheater valleys that develop under heavy rainfall (>∼2500 mm/year), rainstorms, and high-elevation differences. Structural and lithological control, and groundwater in ocean islands, may in turn preform and guide development of high-energy valleys through rockfalls, landsliding, mudflows, and mass wasting. Given the intense erosion, amphitheater valleys are able to breach a primary depression from several directions and degrade the summit region at a high rate. Occasionally, amphitheater valleys may create summit depressions without a pre-existing crater or caldera. The resulting, negative landforms, which may drain in several directions and the primary origin of which is commonly unrecognizable, should be included in erosion-transformed volcanic depressions. Received: 4 January 1998 / Accepted: 18 January 1999  相似文献   
79.
Geomorphological processes in the Thar Desert of India are largely climate driven. In the lower reaches of the River Luni (the only major drainage system in the Thar Desert) a fluvio‐aeolian sequence was located at a site called Khudala. Sediments of this sequence represented a variety of depositional environments, namely aeolian, fluvially reworked aeolian, overbank deposits, gravels, and occasional evidence of pedogenesis. This provided a good opportunity to study aeolian–fluvial interaction in the region and for deducing climatic records. From the luminescence dating standpoint these sequences offered a good opportunity for a comparative study of thermoluminescence (TL), blue‐green light stimulated luminescence (BGSL) and infrared light stimulated luminescence (IRSL) on different mineral separates of identical provenance but deposited under different environments. Broadly, within experimental errors, the TL ages agreed with BGSL and IRSL ages on aeolian sands, but differed substantially in the case of fluvially reworked and proximally deposited sands and silts. The sequence provided a record spanning more than 100 ka, with an aeolian phase at > 100 ka, a channel activation phase between 70 and 30 ka and a phase of climate instability between 13 and 8 ka. This appears consistent with the records of monsoon performance during this period, which includes the Younger Dryas. It is also inferred that during the Last Glacial epoch, geomorphological processes in the Thar (both aeolian and fluvial) were dormant largely on account of their relationship with the southwest monsoon. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
80.

Any sustainable resource utilization plan requires evaluation of the present and future environmental impact. The present research focuses on future scenario generation of environmental vulnerability zones based on grey analytic hierarchy process (grey-AHP). Grey-AHP combines the advantages of grey clustering method and the classical analytic hierarchy process (AHP). Environmental vulnerability index (EVI) considers twenty-five natural, environmental and anthropogenic parameters, e.g. soil, geology, aspect, elevation, slope, rainfall, maximum and minimum temperature, normalized difference vegetation index, drainage density, groundwater recharge, groundwater level, groundwater potential, water yield, evapotranspiration, land use/land cover, soil moisture, sediment yield, water stress, water quality, storage capacity, land suitability, population density, road density and normalized difference built-up index. Nine futuristic parameters were used for EVI calculation from the Dynamic Conversion of Land-Use and its Effects, Model for Interdisciplinary Research on Climate 5 and Soil and Water Assessment Tool. The resulting maps were classified into three classes: “high”, “moderate” and “low”. The result shows that the upstream portion of the river basin comes under the high vulnerability zone for the years 2010 and 2030, 2050. The effectiveness of zonation approach was between “better” and “common” classes. Sensitivity analysis was performed for EVI. Field-based soil moisture point data were utilized for validation purpose. The resulting maps provide a guideline for planning of detailed hydrogeological studies.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号