首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   28篇
  国内免费   2篇
测绘学   8篇
大气科学   32篇
地球物理   107篇
地质学   226篇
海洋学   41篇
天文学   43篇
综合类   2篇
自然地理   24篇
  2024年   1篇
  2022年   2篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   11篇
  2017年   16篇
  2016年   23篇
  2015年   24篇
  2014年   20篇
  2013年   28篇
  2012年   29篇
  2011年   34篇
  2010年   24篇
  2009年   39篇
  2008年   25篇
  2007年   32篇
  2006年   19篇
  2005年   28篇
  2004年   7篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有483条查询结果,搜索用时 578 毫秒
61.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   
62.
Madagascar has one of the highest poverty rates in the world and consequently the long-term monitoring of groundwater resources is not a priority for the authorities. However, groundwater is often the only sustainable resource that has a satisfactory quality to supply the population. This is especially true in the south-west of the country, which is a semi-arid region and a global change hot spot (intense land use and climate changes). In response to the lack of data, the Groundwater Resource Observatory for Southwestern Madagascar (GROSoM) was established to monitor piezometry and meteorology over the longer term as part of a humanitarian response. The first site was setup in 2014 in a catchment located over a carbonate plateau; in 2018, a second site was installed in an alluvial setting within a crystalline basement catchment and a third site will be installed in 2020 to monitor groundwater dynamics in a coastal setting. The three sites, located between Toliara and Taolagnaro cities, are complementary and representative of various hydrogeological systems in Southwestern Madagascar. Each site includes a weather station and between 3 and 6 piezometric probes. The monitoring data indicate a strong inter-annual variability in precipitation, which induces a strong variability in aquifers recharge. One of the driest years in 2016 seems to be consistent with strong El Niño – Southern Oscillation (ENSO) effects observed at the global scale, while years with higher recharge appear to be related to cyclones such as Fundi in 2015 and Eketsang in 2019. Preliminary results of cross-disciplinary studies demonstrated a link between groundwater and health issues (i.e., admissions to basic health centres). This observatory aims to produce long-term data and has two objectives: (i) strengthening the early warning system for humanitarian crises in Madagascar; (ii) contributing to a better understanding of the effects of climate change on groundwater resources in this semi-arid region.  相似文献   
63.
64.
The shale gas boom in the United States spurred a shift in electricity generation from coal to natural gas. Natural gas combined cycle units emit half of the CO2 to produce the same energy as a coal unit; therefore, the market trend is credited for a reduction in GHG emissions from the US power sector. However, methane that escapes the natural gas supply chain may undercut these relative climate benefits. In 2016, Canada, the United States and Mexico pledged to reduce methane emissions from the oil and natural gas sector 40–45% from 2012 levels by 2025. This article reviews the science-policy landscape of methane measurement and mitigation relevant for meeting this pledge, including changes in US policy following the 2016 presidential election. Considerable policy incoherence exists in all three countries. Reliable inventories remain elusive; despite government and private sector research efforts, the magnitude of methane emissions remains in dispute. Meanwhile, mitigation efforts vary significantly. A framework that integrates science and policy would enable actors to more effectively inform, leverage and pursue advances in methane measurement and mitigation. The framework is applied to North America, but could apply to other geographic contexts.

Key policy insights

  • The oil and gas sector’s contribution to atmospheric methane concentrations is becoming an increasingly prominent issue in climate policy.

  • Efforts to measure and control fugitive methane emissions do not presently proceed within a coherent framework that integrates science and policy.

  • In 2016, the governments of Canada, Mexico and the United States pledged to reduce methane emissions from the oil and natural gas sector 40–45% from 2012 levels by 2025.

  • The 2016 presidential election in the United States has halted American progress at the federal level, suggesting a heavier reliance on industry and subnational efforts in that country.

  • Collectively or individually, the countries, individual agencies, or private stakeholders could use the proposed North American Methane Reduction framework to direct research, enhance monitoring and evaluate mitigation efforts, and improve the chances that continental methane reduction targets will be achieved.

  相似文献   
65.
Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (~ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δρ ~ 1 kg/m3 in ~ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685–698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m?2d?1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.  相似文献   
66.
CO2 emissions to the atmosphere were studied in a fertilized sandy agricultural soil with and without a catch crop sown into the main crop. The catch crop was grown primarily with the purpose to decrease N-leaching but this study also wanted to find out if the catch crop could have an effect in a climate change perspective. Plots with catch crop showed decreased CO2 emissions from the soil. Since previous results have shown that catch crops effectively decrease N-leaching we recommend growing catch crops as an effective measure for helping both the climate and the eutrophication issue. Seasonal variations in CO2 emissions were pronounced with maximum emissions from the fertilized agricultural soil in June and from an adjacent unmanaged grassland in August. From the plot with catch crop emissions decreased in July and August but somewhat increased later in the autumn. Fertilized agricultural soil showed a within-soil CO2 sink after harvest, i.e. within-soil CO2 uptake. Availability of NH4+ or NO3- in the soil seems to influence the within-soil CO2 sink, with NH4+ enforcing the sink while the same amount of NO3- instead increased CO2 emissions.  相似文献   
67.
Boron and Li isotopes have been tested as environmental tracers of treated sewage injected into a sandy aquifer (Shafdan reclamation project, Israel). During a 38 days injection test in a newly dug injection well, a conservative artificial tracer (Br) was monitored together with δ11B and δ7Li in the injectate, in the unsaturated soil zone (porous cup) and an observation well in the aquifer. In spite of B and Li concentrations in the injectate close to background values, significant shifts of the isotope signatures could be observed over the duration of the injection test. Boron isotope ratios show a breakthrough curve delayed with respect to Br breakthrough due to some reversible sorption on the aquifer material. No isotope fractionation was observed in the unsaturated or the saturated zone so that B isotopes can be considered as conservative in the investigated part of the aquifer system. Lithium isotopes are strongly fractionated, probably due to sorption processes. Lithium concentrations point to a Li sink in the system, δ7Li values vary strongly with a tendency of 7Li depletion in the liquid phase over the duration of the experiment. This is opposite to the expected preferential sorption of 6Li onto clay minerals. Boron isotopes reveals a valuable tracer of artificial recharge of freshwaters derived from treated sewage, both for short term tracer tests and for long-term monitoring of artificial recharge, even if in aquifers with higher clay contents, sorption-linked isotope fractionation cannot be excluded. More data are needed on Li isotope fractionation in natural groundwater systems to assess the potential of this tracer as monitoring tool.  相似文献   
68.
69.
70.
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem–Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg–Cl waters are leached from aquifer rocks. Leaching of Mg–Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号