首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24402篇
  免费   171篇
  国内免费   916篇
测绘学   1411篇
大气科学   1977篇
地球物理   4497篇
地质学   11589篇
海洋学   1002篇
天文学   1632篇
综合类   2161篇
自然地理   1220篇
  2020年   1篇
  2019年   1篇
  2018年   4761篇
  2017年   4040篇
  2016年   2576篇
  2015年   233篇
  2014年   80篇
  2013年   24篇
  2012年   988篇
  2011年   2728篇
  2010年   2014篇
  2009年   2310篇
  2008年   1888篇
  2007年   2360篇
  2006年   53篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.  相似文献   
162.
Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.  相似文献   
163.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   
164.
An assessment of coastal pollution was made on the basis of trace element concentrations (arsenic — As, mercury — Hg) in the Gulf of Mannar. The beachrock samples were collected along the coastal tracts between Rameswaram and Kanyakumari. The samples were dried and digested to determine the As and Hg using atomic absorption spectrophotometer (AAS-air-acetylene and nitrous oxide method). The As and Hg accumulation status of the beachrock was assessed using geo-accumulation index values (I geo). The accumulation of As and Hg in the beachrock ranges from 2.75 to 20.72 μg g−1 and from 0.06 to 0.31 μg g−1, respectively. The As and Hg concentrations in the beachrocks are compared with crustal average values and average of other region sediments. The possible source of the contamination is from atmospheric deposition and anthropogenic activities.  相似文献   
165.
Evidence from ultraslow spreading mid-ocean ridges and both fossil and present-day Ocean–Continent Transitions (OCT) demonstrates that mantle serpentinization resulting from the interaction of mantle rock and water during tectonic exhumation is widespread. Observations at white smokers in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems, which use methane as the only source of carbon. An important question is whether such bio-systems are more generally pervasive in their association with serpentinized mantle in the subsurface. In this study, we examined whether there is evidence for such a methanotrophic system in exhumed serpentinized mantle at a magma-poor rifted continental margin, by probing for characteristic biological markers in these and associated sedimentary rocks in the Totalp unit of SE Switzerland. This unit represents a remnant of the former OCT of the southern Alpine Tethyan margin and was chosen because of its mild Alpine tectonic and low-grade metamorphic overprint during Alpine orogeny, hence giving potential for the preservation of indigenous organic matter (OM). Totalp samples are characterized by low organic carbon contents of 11–647 ppm. The majority of the samples contain hydrocarbons in the form of n-alkanes in the range C17–C36. Some sediments contain isoprenoids, for example pristane and phytane and a suite of steranes that are consistent with a marine origin for the OM preserved in the rocks. Traces of marine planktonic and bacterial OM are preserved in the serpentinized mantle and overlying sediments of this ancient Tethyan OCT, but there is no evidence that the OM has been generated from methanotrophic bio-systems.  相似文献   
166.
The complete mitochondrial cytochrome oxidase subunit Ⅱ (COⅡ) gene of Penaeinae shrimp Fenneropenaeus chinensis was cloned and sequenced. The gene is 688 bp in length and codes for 229 amino acids. It shows 83.2%, 87.0% and 83.8% sequence similarity to Marsupenaeus Japonicus, Penaeus monodon and Farfantepenaeus notialis, respectively. The A+T content of the whole gene and that at the third position of codons are 64.7% and 78.2%, respectively. The phylogenetic relationship between F. chinensis and three other species representing genera Farfanatepenaeus, Marsupenaeus and Penaeus was analyzed. Results showed that the genetic distances among the four taxa ranged from 0.144 0 to 0.200 5, exceeding those estimated with COⅠ and partial 16S rRNA gene sequences among Marsupenaeus, Litopenaeus and Melicertus, and being therefore larger than the value among subgenera. It has been suggested that the COⅡ gene has a faster evolutionary rate than that of the COⅠ gene and partial 16S rRNA gene and could be used for phylogenetic analysis at genus or species level. The results of the present study indicated that Farfantepenaeus, Fenneropenaeus, Marsupenaeus and Penaeus are at a higher phylogenetic level than subgenus, which supports the opinion of the elevation of phylogenetic status of the four subgenera to genus level.  相似文献   
167.
This paper presents an analysis of the slope failure of a Suvarnabhumi drainage canal during construction. The Suvarnabhumi drainage canal project includes a large drainage canal with a road on both sides. The width of the bottom of the drainage canal is 48.0 m, the depth of the drainage canal is 3.0 m, and the length of the drainage canal is 10.5 km. Because the project was constructed on very soft Bangkok clay, deep cement mixing (DCM) columns were employed to increase the stability of the excavated canal. The failure of the drainage canal slope occurred 25 days after the end of excavation. The field monitoring data show that lateral movement of the canal slope continuously increased with time, which caused failure due to the instability of the canal slope. The time-dependent deformation and undrained creep behavior of very soft clay was suspected to be the cause of the canal failure. A laboratory investigation of undrained creep behavior and a finite element analysis (FEA) using the soft soil creep (SSC) model were performed to confirm the causes of the canal failure. The results indicate that very soft clay specimens that are subjected to deviator creep stress levels of 70 and 100 % of the peak strength failed by creep rupture within 60 days and 8 min, respectively. The factor of safety for the canal slope, which was obtained from the FEA, shows significant reduction from the initial value of 1.710 to 1.045 within 24 days after the end of excavation due to the effect of undrained creep. This paper also describes a solution method that is applied to a new section of the canal. Field monitoring and an FEA of the new trial section were performed to prove the effectiveness of the solution method.  相似文献   
168.
169.
Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database (CsLID) by utilizing Google’s public cloud computing platform. Firstly, CsLID (Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the CsLID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the CsLID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.  相似文献   
170.
Phenolic compounds have become one kind of the important pollutants of the marine environment. Single-walled Carbon nanotubes, as one-dimensional nano materials, have light weight and perfect hexagonal structure of connections, with many unusual mechanical, chemical and electrical properties. In recent years, with the research of carbon nanotubes and other nano materials, the application prospect is also constantly discussed. In this paper, homemade single-walled carbon nanotubes(SWCNTs) coating was used for establishing an analytical approach to the determination of five kinds of phenolic compounds in seawater using SPME-GC-MS. Optimal conditions: After saturation was conducted with Na Cl, and p H was adjusted to 2.0 with H_2SO_4, the extract was immersed in a water bath at 40 for GC℃-MS determination through 40-min agitating extraction at 500 rmin~(-1) and 3-min desorption at 280℃. The liniearities ranged between 0.01-100 μg L~(-1), and the determination limits ranged between 1.5-10 ngL~(-1). The relative standard deviation(RSD, n = 5) was less than 6.5%. For the phenolic compounds obtained from the spiked recovery test for actual seawater samples, the rates of recovery were 87.5%-101.7%, and the RSDs were less than 8.8%, which met the requirements of determination. Due to its simplicity, high efficiency and low consumption, this approach is suitable for the analysis of trace amounts of phenolic compounds in marine waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号