首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
测绘学   1篇
大气科学   1篇
地球物理   7篇
地质学   10篇
海洋学   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有23条查询结果,搜索用时 93 毫秒
21.
Downhole measurements recorded in the context of the Ocean Drilling Program in Hole 504B, the deepest hole drilled yet into the oceanic crust, are analyzed in terms of accretion processes of the upper oceanic crust at intermediate spreading-rate. The upper part of the crust is found to support the non steady-state models of crustal accretion developed from seafloor observations (Kappel and Ryan, 1986; Gente, 1987). The continuous and vertical nature of borehole measurements provides stratigraphic and structural data that cannot be obtained solely from seafloor studies and, in turn, these models define a framework to analyze the structural, hydrological, and mineralogical observations made in the hole over the past decade.Due to the observed zonation with depth of alteration processes, and its relation to lava morphologies, the 650-m-thick effusive section penetrated in Hole 504B is postulated to be emplaced as the result of two main volcanic sequences. Massive lava flows are interpreted as corresponding to the onset of these sequences emplaced on the floor of the axial graben. The underlying lava made of structures with large porosity values and numerous cm-scale fractures is thus necessarily accreted at the end of the previous volcanic episode. On top of such high heterogeneous and porous intervals, the thick lava flows constitute crustal permeability barriers, thereby constraining the circulation of hydrothermal fluids.Accreted in the near vicinity of the magma chamber, the lower section is that exposed to the most intense hydrothermal circulation (such as black smokers activity). Once capped by a massive flow at the onset of the second volcanic phase, the lower interval is hydrologically separated from ocean-waters. A reducing environment develops then below it resulting, for example, in the precipitation of sulfides. Today, whereas the interval corresponding to the first volcanic episode is sealed by alteration minerals, the second-one is still open to fluid circulation in its upper section. Thus, upper part of the volcanic edifice is potentially never exposed to fluids reaching deep into the crust, while the lower one is near the ridge axis.Considering that most of the extrusives are emplaced within a narrow volcanic zone, the first unit extruded for a given vertical cross-section is necessarily emplaced at the ridge-axis. In Hole 504B, the 250-m-thickTransition Zone from dikes to extrusives is interpreted as the relict massive unit flooding the axial graben at the onset of the first volcanic sequence, and later ruptured by numerous dikes. Further from the axis, the same massive unit constitutes a potential permeability cap for vertical crustal sections accreted earlier. Also, the upper 50 meters of the basement might be considered as the far-end expression of massive outpours extruded near the ridge-axis.  相似文献   
22.
The presence of raised beaches and marine terraces along the Makran coast indicates episodic uplift of the continental margin resulting from large-magnitude earthquakes. The uplift occurs as incremental steps similar in height to the 1–3 m of measured uplift resulting from the November 28, 1945 (M 8.3) earthquake at Pasni and Ormara, Pakistan. The data support an E—W-trending, active subduction zone off the Makran coast.The raised beaches and wave-cut terraces along the Makran coast are extensive with some terraces 1–2 km wide, 10–15 m long and up to 500 m in elevation. The terraces are generally capped with shelly sandstones 0.5–5 m thick. Wave-cut cliffs, notches, and associated boulder breccia and swash troughs are locally preserved. Raised Holocene accretion beaches, lagoonal deposits, and tombolos are found up to 10 m in elevation. The number and elevation of raised wave-cut terraces along the Makran coast increase eastward from one at Jask, the entrance to the Persian Gulf, at a few meters elevation, to nine at Konarak, 250 km to the east. Multiple terraces are found on the prominent headlands as far east as Karachi. The wave-cut terraces are locally tilted and cut by faults with a few meters of displacement.Long-term, average rates of uplift were calculated from present elevation, estimated elevation at time of deposition, and 14C and U–Th dates obtained on shells. Uplift rates in centimeters per year at various locations from west to east are as follows: Jask, 0 (post-Sangamon); Konarak, 0.031–0.2 (Holocene), 0.01 (post-Sangamon); Ormara 0.2 (Holocene).  相似文献   
23.
Deltas contain sedimentary records that are not only indicative of water‐level changes, but also particularly sensitive to earthquake shaking typically resulting in soft‐sediment‐deformation structures. The Kürk lacustrine delta lies at the south‐western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re‐evaluates water‐level changes and earthquake shaking that have affected the Kürk Delta, combining geophysical data (seismic‐reflection profiles and side‐scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water‐level changes provides a temporal framework for the depositional record. In addition to the common soft‐sediment deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake‐induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a palaeoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the East Anatolian Fault. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the ad 1874 to 1875 East Anatolian Fault earthquake sequence. Their sedimentological characteristics were determined by X‐ray imagery, X‐ray diffraction, loss‐on‐ignition, grain‐size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post‐seismic sediment reworking of earthquake‐triggered landslides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号