首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1728篇
  免费   55篇
  国内免费   11篇
测绘学   19篇
大气科学   97篇
地球物理   327篇
地质学   633篇
海洋学   122篇
天文学   439篇
综合类   3篇
自然地理   154篇
  2021年   18篇
  2019年   13篇
  2018年   24篇
  2017年   27篇
  2016年   42篇
  2015年   33篇
  2014年   45篇
  2013年   83篇
  2012年   37篇
  2011年   56篇
  2010年   65篇
  2009年   69篇
  2008年   81篇
  2007年   77篇
  2006年   86篇
  2005年   64篇
  2004年   64篇
  2003年   57篇
  2002年   61篇
  2001年   51篇
  2000年   49篇
  1999年   41篇
  1998年   59篇
  1997年   29篇
  1996年   26篇
  1995年   22篇
  1994年   32篇
  1993年   20篇
  1992年   17篇
  1991年   11篇
  1990年   18篇
  1989年   20篇
  1988年   18篇
  1987年   22篇
  1986年   24篇
  1985年   23篇
  1984年   32篇
  1983年   10篇
  1982年   26篇
  1981年   18篇
  1980年   22篇
  1979年   18篇
  1978年   24篇
  1977年   15篇
  1976年   19篇
  1975年   16篇
  1974年   13篇
  1973年   13篇
  1972年   16篇
  1971年   11篇
排序方式: 共有1794条查询结果,搜索用时 31 毫秒
61.
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a?x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P?T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ~800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid‐absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward‐modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.  相似文献   
62.
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear‐induced anisotropy. The resulting approach is fully three‐dimensional and is not restricted to plane‐displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
New activity–composition (ax) relations for minerals commonly occurring in metapelites are presented for use with the internally consistent thermodynamic dataset of Holland & Powell ( 2011 , Journal of Metamorphic Geology, 29 , 333–383). The ax relations include a broader consideration of Fe2O3 in minerals, changes to the formalism of several phases and order–disorder in all ferromagnesian minerals where Fe–Mg mixing occurs on multiple sites. The ax relations for chlorite, biotite, garnet, chloritoid, staurolite, cordierite, orthopyroxene, muscovite, paragonite and margarite have been substantially reparameterized using the approach outlined in the companion paper in this issue. For the first time, the entire set of ax relations for the common ferromagnesian minerals in metapelitic rocks is parameterized simultaneously, with attention paid to ensuring that they can be used together to calculate phase diagrams of geologically appropriate topology. The ax relations developed are for use in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system for both subsolidus and suprasolidus conditions. Petrogenetic grids in KFMASH and KFMASHTO are similar in topology to those produced with earlier end‐member datasets and ax relations, but with some notable differences. In particular, in subsolidus equilibria, the FeO/(FeO + MgO) of garnet is now greater than in coexisting staurolite, bringing a number of key staurolite‐bearing equilibria into better agreement with inferences from field and petrographic observations. Furthermore, the addition of Fe3+ and Ti to a number of silicate phases allows more plausible equilibria to be calculated in relevant systems. Pseudosections calculated with the new ax relations are also topologically similar to equivalent diagrams using earlier ax relations, although with many low variance fields shifting in PT space to somewhat lower pressure conditions.  相似文献   
64.
With the adoption of an ‘expanded chronology’ for the Middle Pleistocene, based on the greater number of warm and cold episodes evident in the marine oxygen isotope record from deep ocean cores, has come the recognition of a meaningful progression of artefact types, something that could not be achieved with reference to the previous ‘compressed chronology’. In Britain, at least, it has been established that Levallois knapping techniques appeared in MIS 9–8, that bout coupé handaxes are indicative of MIS 3 and, rather more tentatively, that assemblages with twisted ovate handaxes in significant numbers represent MIS 11 occupation. Added to these key markers, it is now possible to suggest that further tool types occur preferentially in deposits of particular age: assemblages with significant proportions of cleavers and ‘ficron’ handaxes appear to be correlated with deposits formed at around the time of the MIS 9 interglacial. This newly recognized patterning within the Lower and Middle Palaeolithic record differs markedly from the previous use, in the mid‐20th century, of archaeological typology as a means of dating Pleistocene sequences, which was based on a relative refinement of tool making that is now recognized to be unrelated to age. Indeed, the authors would wish to emphasize that, even with reference to the new scheme presented here, the archaeological record should only be seen as dating evidence ‘of last resort’.  相似文献   
65.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
66.
Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
67.
68.
69.
70.
This paper examines interactions among syn‐rift continental margin extension, evaporites, particularly rocksalt (halite), deposited in the overlying sedimentary basins, and clastic sediment loading. We present dynamically evolving 2D numerical models that combine syn‐rift lithospheric extension, with salt (viscous halite, 1018–1019 Pa s) and clastic (frictional‐plastic) sediment deposition to investigate how salt is distributed and subsequently mobilized during syn‐rift extension. Example results are shown, contrasting salt deposition in the early, mid and late syn‐rift phases of a single lithospheric extension model. The lithospheric model is chosen to give depth‐dependent extension and intermediate width margins with proximal grabens and a hyperextended distal region. The models exhibit diachronous migration of extension towards the rift axis and this is reflected in the faulting of overlying sediments. The models illustrate the roles of timing of salt deposition, relative to rifting and subsequent sedimentation, in defining the location and deformation of syn‐rift salt, with post‐salt sediment progradation in some models. Late deposition of salt leads to increased lateral extent of the original salt body and decreased variation in salt thickness. Seaward flow of salt increases with later deposition; early syn‐rift salt is deposited and trapped in the grabens, whereas mid and late syn‐rift salt tends to flow towards the distal margin or even over the oceanic crust. Prograding clastic post‐salt sediments drive more substantial seaward movement of mid and late syn‐rift salt. A numerical model of the Red Sea with evaporite deposition during the mid to late syn‐rift period, preceded and followed by aggrading and prograding clastic sediment, shows reasonable agreement with observations from the central Red Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号