首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
大气科学   18篇
地球物理   41篇
地质学   43篇
海洋学   8篇
天文学   35篇
自然地理   13篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   9篇
  2014年   12篇
  2013年   8篇
  2012年   4篇
  2011年   16篇
  2010年   6篇
  2009年   10篇
  2008年   11篇
  2007年   15篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1992年   2篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
121.
The climate change phenomena have been influencing terrestrial and glacial ecosystems around the planet. Maritime Antarctica is especially sensitive to these climate variations and over the last 50 years increasing global air temperatures have caused extensive glacial retreat. The objective of this study is to evaluate the potential use of the SAR technology in monitoring the surface dynamics of the Potter Peninsula, King George Island, maritime Antarctica. An image generated by the SAR satellite COSMO-SkyMed, obtained on 2 February 2011, was used to extract the backscattering values of targets on the surface for further processing and classification, using a supervised statistic classifier of maximum likelihood for the determination of the surface classes. The average backscattering of water bodies presented high similarity, which made its separation unattainable. On the other hand, the surface classes’ bare ice and wet snow over the glacier presented distinct average backscattering values, which allowed an efficient and precise classification using only this parameter. The classification process showed satisfactory results for periglacial environments, presenting high fidelity to the field data.  相似文献   
122.
123.
Summary The prediction of Indian Summer Monsoon Rainfall (ISMR) is vital for Indian economic policy and a challenge for meteorologists. It needs various predictors among which El Niño-Southern Oscillation (ENSO) is the most important. It has been established by various researchers that ENSO and ISMR relationship is weakening in recent years. It has been also argued that changes in ENSO-ISMR relationship may be due to decadal fluctuations, or it may be the indicative of longer-term trends related to anthropogenic-induced climate changes.In the present communication, an attempt is made to discuss the variability and predictability of ISMR in recent years. It is found that three different indices associated with different regions in the tropics and extra-tropics at different levels of the atmosphere-Asian land mass index represented by geopotential height at upper troposphere (A1), Caribbean-North Atlantic index represented by geopotential height at middle troposphere (A2) and tropical Pacific index at surface level (A3) – have different mechanisms to interact mutually and separately with ISMR in different periods. In recent years ISMR shows weak association with A1 and A3 while strong association with A2. Thus, if these three indices could be combined objectively, they can give rise to the predictability of ISMR. This objective combination is achieved here using Artificial Neural Network (ANN) and a model is developed to predict ISMR. This model has predicted reasonably well during the whole period of consideration (1958–2000) with a correlation coefficient of 0.92 in last 11 years (1990–2000) whereas most of the models fail to predict the variability in recent time.Current affiliation: Department of Physics, Federal University of Parana, Curitiba, Brazil.Received June 2002; revised October 1, 2002; accepted November 12, 2002 Published online: April 10, 2003  相似文献   
124.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   
125.
Due to growing concerns regarding persistent organic pollutants (POPs) in the environment, extensive studies and monitoring programs have been carried out in the last two decades to determine their concentrations in water, sediment, and more recently, in biota. An extensive review and analysis of the existing literature shows that whilst the vast majority of these efforts either attempt to compare (a) spatial changes (to identify "hot spots"), or (b) temporal changes to detect deterioration/improvement occurring in the environment, most studies could not provide sufficient statistical power to estimate concentrations of POPs in the environment and detect spatial and temporal changes. Despite various national POPs standards having been established, there has been a surprising paucity of emphasis in establishing accurate threshold concentrations that indicate potential significant threats to ecosystems and public health. Although most monitoring programs attempt to check compliance through reference to certain "environmental quality objectives", it should be pointed out that many of these established standards are typically associated with a large degree of uncertainty and rely on a large number of assumptions, some of which may be arbitrary. Non-compliance should trigger concern, so that the problem can be tracked down and rectified, but non-compliance must not be interpreted in a simplistic and mechanical way. Contaminants occurring in the physical environment may not necessarily be biologically available, and even when they are bioavailable, they may not necessarily elicit adverse biological effects at the individual or population levels. As such, we here argue that routine monitoring and reporting of abiotic and biotic POPs concentrations could be of limited use, unless such data can be related directly to the assessment of public health and ecological risks. Risk can be inferred from the ratio of predicted environmental concentration (PEC) and the predicted no effect concentration (PNEC). Currently, the paucity of data does not allow accurate estimation of PNEC, and future endeavors should therefore, be devoted to determine the threshold concentrations of POPs that can cause undesirable biological effects on sensitive receivers and important biological components in the receiving environment (e.g. keystone species, populations with high energy flow values, etc.), to enable derivation of PNECs based on solid scientific evidence and reduce uncertainty. Using the threshold body burden of POPs required to elicit damages of lysosomal integrity in the green mussel (Perna virvidis) as an example, we illustrate how measurement of POPs in body tissue could be used in predicting environmental risk in a meaningful way.  相似文献   
126.
Among the studies on runoff connectivity of soils with heterogeneous properties, the need to understand the relationships between soil heterogeneity and the associated runoff organization and amount is frequently mentioned. In this study, we simulate the stationary runoff–runon process on bi‐dimensional (2D) flat slopes for five infiltrability distributions, one of them correlated, as a function of rainfall intensity and flow dimension. We define flow dimension by 1 + ε, where ε is the outflow fraction transferred from one pixel to each of the two lateral downslope pixels. Our aim is to assess the effect of ε and soil heterogeneity on the connectivity function compared to the mean runoff flow rate, the wet area and the number of runoff patterns. The analysis of connectivity is carried within the percolation framework. The results show that the integral connectivity scale is more sensitive to the flow dimension and soil heterogeneity compared to the other variables. The wet area fraction does not depend on ε. Unlike previous studies, we find that increased runoff production is not necessarily related to increased connectivity. The use of the connectivity function within the percolation framework appears to be a valuable method for assessing the impact of soil heterogeneity and flow dimension on the runoff organization during a rainfall event. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
127.
The crystallographic preferred orientations of a series of experimentally deformed fine-grained albite aggregates were measured by synchrotron source X-ray diffraction. Most samples were deformed and extensively recrystallized by low-temperature recrystallization-accommodated dislocation creep. In axial compression as well as simple shear these samples developed weak but distinct crystallographic preferred orientations consistent with intracrystalline slip on {001}<100>; the sheared samples have a marked asymmetry of the <100> maxima with respect to the shear zone boundaries. One sample was axially compressed by solution precipitation creep; it developed a somewhat different but equally strong preferred orientation, perhaps reflecting crystallographic anisotropy in rates of dissolution and growth.  相似文献   
128.
Interdisciplinary investigations at the Milford Reservoir, central Maine, resulted in excavation and analysis of a Middle Archaic quarry and manufacturing site at Gilman Falls, dated to between 7300 and 6300 yr B.P. Lithological analysis indicates that the majority of the artifacts came from very local outcrops, providing low‐grade metamorphic rocks. Native Americans used a specialized technique to reduce the granofels and other rocks to long rods, artifacts commonly placed in local cemeteries. The Gilman Falls site was largely abandoned once these artifacts were no longer in vogue. Therefore, access to particular bedrock outcrops seems to have played an important role in site selection. Gilman Falls and other early to middle Holocene sites are preserved where bedrock sill dams ponded water that deposited fine sand. Early site sedimentation history is paralleled by a drainage change in the headwaters of the Penobscot River. Evidence for lower mid‐Holocene lake levels and a period of higher temperatures and lower precipitation may correlate with the sedimentation history. © 2001 John Wiley & Sons, Inc.  相似文献   
129.
Belmadani  Ali  Dalphinet  Alice  Chauvin  Fabrice  Pilon  Romain  Palany  Philippe 《Climate Dynamics》2021,56(11):3687-3708

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds, which can exceed 300 km h−1, can cause serious damage, particularly along coastlines where the combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal flooding. This work presents future projections of North Atlantic tropical cyclone-related wave climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid reaching ~ 14 km resolution to the north-east of the eastern Caribbean is able to reproduce the distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984–2013, 5 members) and future (2051–2080, 5 members) simulations with the IPCC RCP8.5 scenario are used to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-latitude swells into a higher 10-km resolution grid over the tropical cyclone main development region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis and satellite altimetry data. Future projections exhibit a modest but widespread reduction in seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases in tropical cyclone-related wind sea and extreme wave heights within a large region extending from the African coasts to the North American continent.

  相似文献   
130.
Natural Hazards - Archaeological sites are increasingly threatened by primary impacts of climate change, including sea-level rise, flooding, and erosion. These important sites represent cultural...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号